亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aroma compounds evolution in fruit spirits under different storage conditions analyzed with multiway anova and artificial neural networks

装瓶线 感官的 芳香 食品科学 乙醛 化学 人工神经网络 生化工程 计算机科学 人工智能 乙醇 有机化学 工程类 葡萄酒
作者
Pau Matias‐Guiu,Juan José Rodríguez‐Bencomo,José R. Pérez‐Correa,Francisco López
出处
期刊:Journal of Food Processing and Preservation [Wiley]
卷期号:44 (5) 被引量:5
标识
DOI:10.1111/jfpp.14410
摘要

For producers, distributors, and restaurateurs, it is essential to understand the variation of the volatile composition of bottled spirits under different storage conditions. Given the scarce information found in this regard, the present study investigates the effect of pH, temperature, light exposure, and time of storage on 18 major volatile compounds of a fruit spirit. To carry out this longitudinal study, a central composite design was applied repeatedly over a year. Multi-way ANOVA and artificial neural networks were used to analyze and model the process. The results show that high temperatures sharply reduce most spirit compounds, especially acetaldehyde, ethyl esters, and linalool. In addition, under standard conditions, most compounds undergo a concentration decrease during the first 20 days of storage and then their composition becomes stable. Most of the other studied conditions showed noticeable effects, although without significant compositional differences. Practical applications The production of alcoholic beverages usually includes a maturation time after distillation and before bottling in order to stabilize the organoleptic characteristics of the product. However, the storage conditions after bottling can affect these organoleptic characteristics, and therefore, to the shelf life of the product. The results presented in this study, evaluating different storage conditions, can be useful not only to keep the organoleptic characteristics, but also to modify these in a controlled way. In addition, the methodology used for the data analysis, based on multi-way ANOVA and artificial neural networks analysis, can be useful in the studies of other types of food products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅啤酒发布了新的文献求助10
1秒前
徐zhipei完成签到 ,获得积分10
4秒前
上官若男应助研友_kngjrL采纳,获得30
5秒前
8秒前
吴端完成签到,获得积分10
12秒前
缪尔岚完成签到,获得积分10
17秒前
EnJingYang完成签到,获得积分10
17秒前
SciGPT应助Murm采纳,获得10
19秒前
ooooozhubi完成签到 ,获得积分10
21秒前
Aaron完成签到 ,获得积分0
24秒前
Tendency完成签到 ,获得积分10
25秒前
27秒前
阳光问安完成签到 ,获得积分10
29秒前
传奇3应助优雅啤酒采纳,获得10
31秒前
吊炸天完成签到 ,获得积分10
31秒前
研友_kngjrL发布了新的文献求助30
32秒前
39秒前
41秒前
Murm发布了新的文献求助10
42秒前
PiX0发布了新的文献求助10
46秒前
47秒前
53秒前
CodeCraft应助成功Winy采纳,获得10
1分钟前
怕孤单的问雁完成签到,获得积分10
1分钟前
bkagyin应助研友_kngjrL采纳,获得30
1分钟前
医学牲完成签到 ,获得积分10
1分钟前
丘比特应助雯雯要提质粒采纳,获得10
1分钟前
ropuuu完成签到,获得积分10
1分钟前
FashionBoy应助好好采纳,获得10
1分钟前
华仔应助喊我彩彩采纳,获得10
1分钟前
科研通AI5应助Keylor采纳,获得10
1分钟前
Action完成签到 ,获得积分10
1分钟前
矜天完成签到 ,获得积分10
1分钟前
Ffegrbgbsssgr发布了新的文献求助10
1分钟前
1分钟前
Action关注了科研通微信公众号
1分钟前
Yolo完成签到,获得积分20
1分钟前
1分钟前
stuckinrain完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4408692
求助须知:如何正确求助?哪些是违规求助? 3893326
关于积分的说明 12114237
捐赠科研通 3538372
什么是DOI,文献DOI怎么找? 1941632
邀请新用户注册赠送积分活动 982309
科研通“疑难数据库(出版商)”最低求助积分说明 878756