PrivateDL: Privacy‐preserving collaborative deep learning against leakage from gradient sharing

计算机科学 差别隐私 随机梯度下降算法 异步通信 信息隐私 泄漏(经济) 私人信息检索 数据共享 信息敏感性 信息泄露 人为噪声 数据挖掘 机器学习 深度学习 数据建模 人工智能 计算机安全 人工神经网络 计算机网络 数据库 宏观经济学 经济 医学 频道(广播) 发射机 替代医学 病理
作者
Qi Zhao,Chuan Zhao,Shujie Cui,Shan Jing,Zhenxiang Chen
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:35 (8): 1262-1279 被引量:37
标识
DOI:10.1002/int.22241
摘要

Large-scale data training is vital to the generalization performance of deep learning (DL) models. However, collecting data directly is associated with increased risk of privacy disclosure, particularly in special fields such as healthcare, finance, and genomics. To protect training data privacy, collaborative deep learning (CDL) has been proposed to enable joint training from multiple data owners while providing reliable privacy guarantee. However, recent studies have shown that CDL is vulnerable to several attacks that could reveal sensitive information about the original training data. One of the most powerful attacks benefits from the leakage from gradient sharing during collaborative training process. In this study, we present a new CDL framework, PrivateDL, to effectively protect private training data against leakage from gradient sharing. Unlike conventional training process that trains on private data directly, PrivateDL allows effective transfer of relational knowledge from sensitive data to public data in a privacy-preserving way, and enables participants to jointly learn local models based on the public data with noise-preserving labels. This way, PrivateDL establishes a privacy gap between the local models and the private datasets, thereby ensuring privacy against the attacks launched to the local models through gradient sharing. Moreover, we propose a new algorithm called Distributed Aggregation Stochastic Gradient Descent, which is designed to improve the efficiency and accuracy of CDL, especially in the asynchronous training mode. Experimental results demonstrate that PrivateDL preserves data privacy with reasonable performance overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王桵发布了新的文献求助10
刚刚
CipherSage应助leaf采纳,获得10
刚刚
刚刚
jojo完成签到,获得积分10
1秒前
Aprial完成签到,获得积分10
1秒前
领导范儿应助LisaZhuo采纳,获得10
1秒前
留胡子的画板完成签到,获得积分10
1秒前
lcw完成签到 ,获得积分10
2秒前
www完成签到,获得积分10
2秒前
小mo爱吃李完成签到,获得积分10
2秒前
王茶茶完成签到,获得积分10
4秒前
SYLH应助卷卷采纳,获得10
4秒前
4秒前
4秒前
李健应助魔法披风采纳,获得10
5秒前
李健应助Mayily采纳,获得10
5秒前
Billy应助lilili采纳,获得30
7秒前
liulei完成签到 ,获得积分10
7秒前
7秒前
过时的天川完成签到,获得积分10
7秒前
www完成签到,获得积分10
7秒前
爱笑凤凰完成签到,获得积分10
8秒前
8秒前
狄百招完成签到,获得积分0
8秒前
机会完成签到,获得积分10
8秒前
Yancy发布了新的文献求助30
8秒前
科研通AI5应助STOOd采纳,获得10
9秒前
9秒前
9秒前
9秒前
执着绿草完成签到 ,获得积分10
11秒前
Welunc发布了新的文献求助10
11秒前
KKLD发布了新的文献求助10
12秒前
leaf完成签到,获得积分20
12秒前
KingYugene完成签到,获得积分10
12秒前
小于要毕业完成签到,获得积分10
12秒前
林大侠完成签到,获得积分10
14秒前
14秒前
14秒前
负责金毛完成签到,获得积分10
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787