Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals

工件(错误) 体素 静息状态功能磁共振成像 可解释性 计算机科学 人工智能 模式识别(心理学) 功能磁共振成像 神经影像学 信号(编程语言) 同步脑电与功能磁共振 神经科学 Echo(通信协议) 心理学 脑电图 程序设计语言 计算机网络
作者
Prantik Kundu,Valerie Voon,Priti Balchandani,Michael Lombardo,Benedikt A. Poser,Peter A. Bandettini
出处
期刊:NeuroImage [Elsevier BV]
卷期号:154: 59-80 被引量:292
标识
DOI:10.1016/j.neuroimage.2017.03.033
摘要

In recent years the field of fMRI research has enjoyed expanded technical abilities related to resolution, as well as use across many fields of brain research. At the same time, the field has also dealt with uncertainty related to many known and unknown effects of artifact in fMRI data. In this review we discuss an emerging fMRI technology, called multi-echo (ME)-fMRI, which focuses on improving the fidelity and interpretability of fMRI. Where the essential problem of standard single-echo fMRI is the indeterminacy of sources of signals, whether BOLD or artifact, this is not the case for ME-fMRI. By acquiring multiple echo images per slice, the ME approach allows T2* decay to be modeled at every voxel at every time point. Since BOLD signals arise by changes in T2* over time, an fMRI experiment sampling the T2* signal decay can be analyzed to distinguish BOLD from artifact signal constituents. While the ME approach has a long history of use in theoretical and validation studies, modern MRI systems enable whole-brain multi-echo fMRI at high resolution. This review covers recent multi-echo fMRI acquisition methods, and the analysis steps for this data to make fMRI at once more principled, straightforward, and powerful. After a brief overview of history and theory, T2* modeling and applications will be discussed. These applications include T2* mapping and combining echoes from ME data to increase BOLD contrast and mitigate dropout artifacts. Next, the modeling of fMRI signal changes to detect signal origins in BOLD-related T2* versus artifact-related S0 changes will be reviewed. A focus is on the use of ME-fMRI data to extract and classify components from spatial ICA, called multi-echo ICA (ME-ICA). After describing how ME-fMRI and ME-ICA lead to a general model for analysis of fMRI signals, applications in animal and human imaging will be discussed. Applications include removing motion artifacts in resting state data at subject and group level. New imaging methods such as multi-band multi-echo fMRI and imaging at 7T are demonstrated throughout the review, and a practical analysis pipeline is described. The review culminates with evidence from recent studies of major boosts in statistical power from using multi-echo fMRI for detecting activation and connectivity in healthy individuals and patients with neuropsychiatric disease. In conclusion, the review shows evidence that the multi-echo approach expands the range of experiments that is practicable using fMRI. These findings suggest a compelling future role of the multi-echo approach in subject-level and clinical fMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无照无招完成签到,获得积分20
1秒前
thinking发布了新的文献求助10
2秒前
朝花夕拾发布了新的文献求助20
2秒前
zzt发布了新的文献求助10
2秒前
关灯完成签到,获得积分10
2秒前
张烤明完成签到,获得积分10
3秒前
11223344发布了新的文献求助10
3秒前
思思完成签到,获得积分10
3秒前
柠檬加冰发布了新的文献求助10
4秒前
上官若男应助123456hhh采纳,获得10
4秒前
wangtingyu发布了新的文献求助30
4秒前
yuan发布了新的文献求助10
5秒前
5秒前
科研通AI5应助grace采纳,获得30
5秒前
思源应助等待的大地采纳,获得10
5秒前
dxg完成签到,获得积分10
5秒前
sys549发布了新的文献求助10
6秒前
清图发布了新的文献求助10
6秒前
泡泡完成签到 ,获得积分10
6秒前
科研通AI5应助光亮靖琪采纳,获得10
6秒前
ac完成签到,获得积分10
6秒前
7秒前
施宛儿完成签到 ,获得积分10
7秒前
cmx发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
Billy应助zhou采纳,获得30
9秒前
9秒前
11223344完成签到,获得积分20
9秒前
11秒前
豆豆发布了新的文献求助10
11秒前
tianyulu完成签到,获得积分10
12秒前
JustinLiu完成签到,获得积分10
12秒前
FashionBoy应助Ubuntu采纳,获得10
12秒前
汉堡包应助JJ采纳,获得10
12秒前
科研通AI5应助Gang采纳,获得10
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274