Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals

工件(错误) 体素 静息状态功能磁共振成像 可解释性 计算机科学 人工智能 模式识别(心理学) 功能磁共振成像 神经影像学 信号(编程语言) 同步脑电与功能磁共振 神经科学 Echo(通信协议) 心理学 脑电图 程序设计语言 计算机网络
作者
Prantik Kundu,Valerie Voon,Priti Balchandani,Michael Lombardo,Benedikt A. Poser,Peter A. Bandettini
出处
期刊:NeuroImage [Elsevier BV]
卷期号:154: 59-80 被引量:307
标识
DOI:10.1016/j.neuroimage.2017.03.033
摘要

In recent years the field of fMRI research has enjoyed expanded technical abilities related to resolution, as well as use across many fields of brain research. At the same time, the field has also dealt with uncertainty related to many known and unknown effects of artifact in fMRI data. In this review we discuss an emerging fMRI technology, called multi-echo (ME)-fMRI, which focuses on improving the fidelity and interpretability of fMRI. Where the essential problem of standard single-echo fMRI is the indeterminacy of sources of signals, whether BOLD or artifact, this is not the case for ME-fMRI. By acquiring multiple echo images per slice, the ME approach allows T2* decay to be modeled at every voxel at every time point. Since BOLD signals arise by changes in T2* over time, an fMRI experiment sampling the T2* signal decay can be analyzed to distinguish BOLD from artifact signal constituents. While the ME approach has a long history of use in theoretical and validation studies, modern MRI systems enable whole-brain multi-echo fMRI at high resolution. This review covers recent multi-echo fMRI acquisition methods, and the analysis steps for this data to make fMRI at once more principled, straightforward, and powerful. After a brief overview of history and theory, T2* modeling and applications will be discussed. These applications include T2* mapping and combining echoes from ME data to increase BOLD contrast and mitigate dropout artifacts. Next, the modeling of fMRI signal changes to detect signal origins in BOLD-related T2* versus artifact-related S0 changes will be reviewed. A focus is on the use of ME-fMRI data to extract and classify components from spatial ICA, called multi-echo ICA (ME-ICA). After describing how ME-fMRI and ME-ICA lead to a general model for analysis of fMRI signals, applications in animal and human imaging will be discussed. Applications include removing motion artifacts in resting state data at subject and group level. New imaging methods such as multi-band multi-echo fMRI and imaging at 7T are demonstrated throughout the review, and a practical analysis pipeline is described. The review culminates with evidence from recent studies of major boosts in statistical power from using multi-echo fMRI for detecting activation and connectivity in healthy individuals and patients with neuropsychiatric disease. In conclusion, the review shows evidence that the multi-echo approach expands the range of experiments that is practicable using fMRI. These findings suggest a compelling future role of the multi-echo approach in subject-level and clinical fMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高贵宛海完成签到,获得积分10
刚刚
白鹭立雪完成签到,获得积分10
1秒前
英姑应助nong12123采纳,获得10
2秒前
鹏1989发布了新的文献求助10
2秒前
豆乳发布了新的文献求助10
3秒前
4秒前
4秒前
FLY应助ironsilica采纳,获得10
4秒前
小怪兽完成签到,获得积分10
5秒前
情怀应助月宸采纳,获得10
5秒前
y741应助张文博采纳,获得10
5秒前
ForZero完成签到,获得积分20
5秒前
5秒前
顾影自怜发布了新的文献求助10
5秒前
在水一方应助机灵天蓝采纳,获得10
5秒前
啊啊啊啊完成签到,获得积分10
6秒前
追寻翩跹完成签到,获得积分10
6秒前
7秒前
www152完成签到,获得积分10
7秒前
打打应助CYJ采纳,获得10
7秒前
咸鱼发布了新的文献求助10
8秒前
打打应助Coatings采纳,获得10
8秒前
xzzt完成签到 ,获得积分10
8秒前
ForZero发布了新的文献求助10
9秒前
悦耳怜珊完成签到,获得积分10
9秒前
跳跃的乐萱完成签到 ,获得积分10
9秒前
魔幻的板凳完成签到,获得积分10
10秒前
王浩应助上官翠花采纳,获得10
10秒前
轻松雨旋完成签到 ,获得积分10
10秒前
希望天下0贩的0应助小紫采纳,获得10
10秒前
FashionBoy应助az采纳,获得10
11秒前
11秒前
11秒前
深情安青应助zhumengyu采纳,获得10
12秒前
yff完成签到 ,获得积分20
12秒前
12秒前
RY完成签到,获得积分10
12秒前
MissingParadise完成签到 ,获得积分10
12秒前
知性的友易完成签到,获得积分10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100156
求助须知:如何正确求助?哪些是违规求助? 3637941
关于积分的说明 11527777
捐赠科研通 3346868
什么是DOI,文献DOI怎么找? 1839422
邀请新用户注册赠送积分活动 906727
科研通“疑难数据库(出版商)”最低求助积分说明 823940