Advances in fluorescence lifetime imaging microscopy: Techniques and biomedical applications

荧光寿命成像显微镜 计算机科学 纳米技术 可视化 吞吐量 医学影像学 数据采集 光学成像 影像学 高分辨率 分子成像 材料科学 生物成像 图像处理 人工智能 成像技术 超分辨率
作者
Fangrui Lin,Chenshuang Zhang,Zhenlong Huang,Yiqiang Wang,Min Yi,Jia Li,Xiaoyu Weng,Yu Chen,Puxiang Lai,Junle Qu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:13 (1)
标识
DOI:10.1063/5.0300853
摘要

Fluorescence lifetime imaging microscopy (FLIM) has emerged as a powerful biomedical imaging technique for the quantitative visualization of intricate molecular and cellular processes. Significant advancements in photonics, sensor technology, data acquisition systems, and computational algorithms have substantially improved the spatiotemporal resolution, imaging depth, and analytical throughput of FLIM. These developments have diversified FLIM methodologies, including time-domain techniques such as time-correlated single-photon counting (TCSPC), time-gated detection, streak cameras, and direct pulse-recording systems, as well as frequency-domain approaches. Concurrently, FLIM has been successfully integrated with advanced imaging modalities, such as multiphoton microscopy, light-sheet imaging, and endoscopy. This review provides a comprehensive synthesis of advanced FLIM technologies. We present in-depth discussions on the principles of lifetime quantification, recent innovations in hardware and algorithms for lifetime recovery, and state-of-the-art strategies to accelerate imaging speed while maintaining resolution and sensitivity. Moreover, we explore FLIM's unique capability to investigate dynamic metabolic states through endogenous autofluorescent cofactors, quantify physicochemical parameters of the cellular microenvironment (e.g., pH, polarity, viscosity, and ion concentrations), and facilitate the diagnosis of diseases such as cancer and neurodegeneration. Finally, we discuss future directions for FLIM development, including integration with deep learning, miniaturized hardware for point-of-care applications, and real-time clinical translation. Collectively, this review aims to provide researchers, clinicians, and engineers with both fundamental knowledge and forward-looking perspectives to further unlock the potential of FLIM in advancing biomedical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小龙采纳,获得10
1秒前
科研小巴发布了新的文献求助10
1秒前
无花果应助jiahongcao采纳,获得10
3秒前
yuyu发布了新的文献求助10
3秒前
fuyu98发布了新的文献求助10
4秒前
甜橘发布了新的文献求助10
4秒前
优美紫槐应助典雅的湘采纳,获得10
5秒前
Hello应助TZMY采纳,获得10
6秒前
7秒前
安青梅完成签到 ,获得积分10
8秒前
9秒前
10秒前
12秒前
12秒前
13秒前
enenen发布了新的文献求助20
15秒前
斯文败类应助yuyu采纳,获得10
15秒前
传奇3应助maruko采纳,获得10
15秒前
jiahongcao发布了新的文献求助10
15秒前
桐桐应助甜橘采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
CodeCraft应助ohh采纳,获得10
18秒前
活泼巧曼发布了新的文献求助10
18秒前
19秒前
一壶古酒应助美丽的周采纳,获得80
20秒前
NexusExplorer应助子勋采纳,获得10
22秒前
kingwill发布了新的文献求助30
22秒前
onestep完成签到,获得积分10
23秒前
25秒前
充电宝应助超大玻璃瓶采纳,获得30
25秒前
Owen应助活泼巧曼采纳,获得10
31秒前
张安安发布了新的文献求助10
32秒前
李健的小迷弟应助aganer采纳,获得10
32秒前
张kk完成签到,获得积分20
33秒前
buciying发布了新的文献求助10
33秒前
34秒前
范特西完成签到 ,获得积分10
35秒前
SSS完成签到 ,获得积分10
35秒前
张kk发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783