Geographical Origin Identification of Citrus Fruits Based on Near-Infrared Spectroscopy Combined with Convolutional Neural Network and Data Augmentation

判别式 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 核(代数) 支持向量机 柑橘×冬青 噪音(视频) 生成对抗网络 线性判别分析 人工神经网络 偏最小二乘回归 鉴定(生物学) 过程(计算) 数据挖掘 柑橘类水果 机器学习 橙色(颜色) 联营 高光谱成像 追踪 分类器(UML) 数学 光谱辐射计
作者
Zhihong Lu,Kangkang Jia,Haoyang Zhang,Lei Tan,Saritporn Vittayapadung,Lie Deng,Qiang Lyu
出处
期刊:Agriculture [MDPI AG]
卷期号:15 (22): 2350-2350
标识
DOI:10.3390/agriculture15222350
摘要

Accurately determining citrus origin is essential for establishing and maintaining regional brands with distinctive qualities while safeguarding the rights and interests of both farmers and consumers. In this study, 2693 navel orange samples were collected from 13 major producing regions in China to establish a comprehensive near-infrared spectroscopy (NIRS) dataset. To address the challenge of citrus origin authentication, this study proposes a novel six-layer one-dimensional convolutional neural network (1D-CNN). The classification accuracy of this model reaches 96.16%. Compared with the support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), and three-layer 1D-CNNs with kernel sizes of 3 and 16, the accuracy of the proposed six-layer model is improved by 9.65%, 3.21%, 3.84%, and 1.98%, respectively. Furthermore, the dataset is augmented using a Wasserstein Generative Adversarial Network (WGAN) and Noise Addition. The results indicate that data augmentation can effectively improve the accuracy of various algorithm models. Among them, the 1D-CNN proposed in this study achieves the best performance on the Noise Addition-augmented dataset, with its accuracy, precision, recall, and F1-score reaching 98.39%, 0.9843, 0.9839, and 0.9840, respectively. Compared with the other four comparative models, the accuracy of this model is increased by 1.48%, 1.36%, 1.48%, and 2.85%, respectively. Finally, a visual analysis of the 1D-CNN’s feature-extraction process was conducted. The results demonstrate that the 1D-CNN can effectively extract discriminative NIR spectral features to accurately distinguish citrus from different origins and that data augmentation markedly improves model performance by increasing data diversity. This work provides a robust tool for citrus origin tracing and offers a new perspective for the origin authentication of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zjuzj发布了新的文献求助10
1秒前
清脆亦寒完成签到,获得积分10
1秒前
2秒前
爆米花应助CATH采纳,获得10
2秒前
Jason完成签到,获得积分10
3秒前
3秒前
蛋挞完成签到,获得积分10
3秒前
科目三应助今夜满天星采纳,获得30
4秒前
4秒前
BOYA完成签到,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Ducky完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
乐观小之应助科研通管家采纳,获得10
5秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
acatao完成签到,获得积分20
7秒前
weitao给weitao的求助进行了留言
7秒前
拼搏映菡完成签到 ,获得积分10
8秒前
9秒前
9秒前
蜗牛完成签到,获得积分10
9秒前
Silence完成签到,获得积分0
9秒前
10秒前
ldgsd完成签到,获得积分10
11秒前
默默人龙完成签到,获得积分10
11秒前
yy完成签到,获得积分10
12秒前
BaoCure完成签到,获得积分10
12秒前
xdedd完成签到,获得积分10
12秒前
13秒前
兔子发布了新的文献求助10
14秒前
14秒前
14秒前
Takahara2000完成签到,获得积分10
16秒前
二小儿发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317879
求助须知:如何正确求助?哪些是违规求助? 4460213
关于积分的说明 13877759
捐赠科研通 4350555
什么是DOI,文献DOI怎么找? 2389481
邀请新用户注册赠送积分活动 1383568
关于科研通互助平台的介绍 1353015