催化作用
双功能
共价键
化学物理
吸附
聚结(物理)
材料科学
金属
纳米技术
化学工程
化学
氧气
原位
多相催化
光化学
分子轨道
纳米颗粒
轨道杂交
双功能催化剂
联轴节(管道)
热的
偶联反应
化学吸附
原子轨道
氧化还原
原子单位
自组装
析氧
过渡金属
密度泛函理论
纳米尺度
锚固
作者
Xiaolin Hu,Wenping Tian,Shiyue Zhang,Yutao Guo,Haozhi Wang,Yida Deng
标识
DOI:10.1002/ange.202519640
摘要
Abstract Single‐atom catalysts (SACs) are fundamentally limited by the activity–stability trade‐off in oxygen electrocatalysis, primarily due to the high surface energy and aggregation tendency of isolated metal atoms. Herein, we develop a low‐temperature (200 °C) in situ thermal anchoring strategy to construct a hybrid Au catalyst (Au ACSA–ZrO 2 ) comprising atomically dispersed Au single atoms and clusters stabilized on ZrO 2 nanoparticles. This mild yet effective process induces strong metal‐support interactions (SMSI), leading to the formation of covalent Au‐O‐Zr interfacial bonds. These bonds effectively inhibit atomic migration and coalescence while simultaneously promoting interfacial charge transfer. Electronic coupling between Au single atoms and adjacent clusters induces significant hybridization between O 2 p and Zr 4 d orbitals, which modulates the local coordination environment and optimizes the adsorption energetics of oxygenated intermediates, thereby accelerating both oxygen reduction and evolution reaction kinetics. When applied in a Zn–air battery, this dual‐site catalyst exhibits exceptional durability with 71.07% round‐trip efficiency and negligible decay over 260 h of continuous cycling, demonstrating that precise orbital interaction, achievable even at low synthesis temperatures, is crucial for high‐performance bifunctional electrocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI