催化作用
磷化物
氢气储存
氢
材料科学
化学工程
再分配(选举)
钌
无机化学
密度泛函理论
解吸
磷
纳米技术
空位缺陷
吸附低温
制氢
产量(工程)
化学
工作(物理)
作者
Gaofu Li,Xianglong Kong,Xiaohan Zhao,Junming Zhang,Junming Zhang,Ying Zhao,Qiqi Sun,Dan Yang,Fei He,Piaoping Yang,Jian Zhang,Jian Zhang,Zhiliang Liu
标识
DOI:10.1002/anie.202512754
摘要
Abstract Precisely constructing efficient and durable catalysts for liquid organic hydrogen carriers (LOHCs) is essential for large‐scale hydrogen storage and transport. In this work, we present a salt‐templated synthesis of ultrathin ruthenium phosphide nanosheets enriched with phosphorus vacancy (U‐RuPv). The catalyst exhibits remarkable catalytic performance for N‐ethylcarbazole (NEC) hydrogenation, achieving complete NEC conversion and a 98.11% yield of 12H‐NEC within 1.0 h at 180 °C and 7 MPa H 2 . The enhanced activity arises from abundant phosphorus vacancies on ultrathin RuP nanosheets, which modulate the electron configuration of adjacent Ru atoms, generating electron‐rich Ru σ+ (0<σ<3) active sites that promote efficient hydrogen activation and spillover. Density functional theory (DFT) calculations reveal that these vacancies induce local charge redistribution and a downward shift in the d‐band center, facilitating hydrogen desorption and NEC activation. This work highlights a dual‐engineering approach combining ultrathin nanoarchitectures and defect chemistry to advance LOHCs catalytic performance, offering new insights for catalyst design in hydrogen storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI