摩擦电效应
可扩展性
计算机科学
材料科学
机器人
机器人学
模式
制作
接口(物质)
人机交互
3D打印
人工智能
仿生学
纳米技术
智能材料
触觉传感器
同轴
电子皮肤
弹道
深度学习
工作(物理)
触觉技术
主动感知
感知
作者
Zhaoya Chen,Yuan Jin,Zhanda Li,Bin Wang,Bin Liu,Bin Xu,F. Gong,Lelun Jiang,Hui Li
标识
DOI:10.1002/adfm.202527673
摘要
ABSTRACT Achieving human‐like dexterity in robotic hands requires electronic skins (E‐skins) that seamlessly integrate multifunctional sensing, decision‐making, and interactive control. However, existing E‐skins for dexterous hands remain limited to single sensing modalities and face scalability challenges due to complex manufacturing processes. Here, we present a triboelectric E‐skin (TE‐Skin) that overcomes the above limitations via an interfacial compression‐assisted coaxial printing technique. This approach enables the scalable fabrication of ultra‐thin sensory arrays that conformably integrate with the entire robotic hand—fingertips, palm, and dorsum. The TE‐Skin simultaneously enables tactile pressure mapping, dynamic trajectory recognition, material discrimination, secure user authentication, and gesture‐based control. Crucially, deep learning algorithms decode complex triboelectric signals, allowing the system to achieve over 95% accuracy in material recognition and user identification. By merging scalable manufacturing and multifunctional sensing, this work provides a versatile platform for next‐generation robotic manipulation and natural human–robot interaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI