质子耦合电子转移
电子转移
化学
质子化
杂原子
离解(化学)
催化作用
选择性
化学物理
多金属氧酸盐
动能
计算化学
氧化还原
光化学
电子
基质(水族馆)
结晶学
动力学
键离解能
过渡状态
分子
键裂
反应机理
激进的
电子传输链
均分解
电子转移离解
物理化学
质子
作者
Zhou Lu,Shannon E Cooney,Hania A. Guirguis,Ellen M Matson
标识
DOI:10.1002/ange.202521665
摘要
Abstract The design of H‐atom transfer catalysts requires the control of redox potential and proton affinity to direct the mechanism, rate, and selectivity of proton–coupled electron transfer (PCET). In the present study, we demonstrate that a series of reduced and protonated vanadium‐substituted Keggin‐type polyoxotungstates ([XVW 11 O 39 (OH)] n– , X = Si, n = 5; X = P, n = 4; X = S, n = 3), exhibit invariant bond dissociation free energies of surface O─H bonds (BDFE(O─H)s). Despite uniform driving forces for H‐atom uptake, kinetic analysis with a variety of H‐atom donors (5,10‐dihydrophenazine, hydrazobenzene, and hydroquinones) reveals differences in rates of substrate oxidation, which are ascribed to disparate PCET mechanisms. Together, these findings show that substitution at the central heteroatom tunes the electron‐ and proton‐transfer driving forces (Δ G PT and Δ G ET ) thereby dictating the operative PCET mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI