Variations in Lung Cancer Risk Among Smokers

肺癌 医学 肺癌筛查 全国肺筛查试验 癌症 癌症预防 随机对照试验 内科学 人口学 社会学
作者
Peter B. Bach,Michael W. Kattan,Mark Thornquist,Mark G. Kris,Ramsey Tate,Matt J. Barnett,Lillian Hsieh,Colin B. Begg
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:95 (6): 470-478 被引量:626
标识
DOI:10.1093/jnci/95.6.470
摘要

Although there is no proven benefit associated with screening for lung cancer, screening programs are attracting many individuals who perceive themselves to be at high risk due to smoking. We sought to determine whether the risk of lung cancer varies predictably among smokers.We used data on 18 172 subjects enrolled in the Carotene and Retinol Efficacy Trial (CARET)-a large, randomized trial of lung cancer prevention-to derive a lung cancer risk prediction model. Model inputs included the subject's age, sex, asbestos exposure history, and smoking history. We assessed the model's calibration by comparing predicted and observed rates of lung cancer across risk deciles and validated it by assessing the extent to which a model estimated on data from five CARET study sites could predict events in the sixth study site. We then applied the model to evaluate the risk of lung cancer among smokers enrolled in a study of lung cancer screening with computed tomography (CT).The model was internally valid and well calibrated. Ten-year lung cancer risk varied greatly among participants in the CT study, from 15% for a 68-year-old man who has smoked two packs per day for 50 years and continues to smoke, to 0.8% for a 51-year-old woman who smoked one pack per day for 28 years before quitting 9 years earlier. Even among the subset of CT study participants who would be eligible for a clinical trial of cancer prevention, risk varied greatly.The risk of lung cancer varies widely among smokers. Accurate risk prediction may help individuals who are contemplating voluntary screening to balance the potential benefits and risks. Risk prediction may also be useful for researchers designing clinical trials of lung cancer prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllll完成签到,获得积分10
1秒前
lixingl完成签到,获得积分20
1秒前
汉堡包应助zhang采纳,获得10
1秒前
1秒前
YY发布了新的文献求助20
2秒前
2秒前
可爱的函函应助封小封采纳,获得10
2秒前
2秒前
hxh发布了新的文献求助10
2秒前
Yuri发布了新的文献求助10
2秒前
乐正广山完成签到,获得积分20
3秒前
closeboy完成签到 ,获得积分10
4秒前
Zjx完成签到,获得积分10
4秒前
4秒前
sunshine完成签到,获得积分10
5秒前
whatever举报苏栀求助涉嫌违规
5秒前
默默诗筠发布了新的文献求助10
5秒前
领导范儿应助WaterBru采纳,获得10
5秒前
我是张铁柱·完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
清脆糖豆发布了新的文献求助10
7秒前
7秒前
YY完成签到,获得积分10
8秒前
8秒前
8秒前
怕孤独的香菇完成签到 ,获得积分10
8秒前
摩卡李发布了新的文献求助20
8秒前
9秒前
9秒前
yangL发布了新的文献求助10
9秒前
美丽梦桃完成签到,获得积分20
9秒前
研友_851KE8发布了新的文献求助10
9秒前
10秒前
10秒前
JamesPei应助面包边采纳,获得30
11秒前
小玉应助故意的成危采纳,获得10
11秒前
Archer宇发布了新的文献求助10
11秒前
无心的访蕊完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834829
求助须知:如何正确求助?哪些是违规求助? 3377355
关于积分的说明 10497842
捐赠科研通 3096774
什么是DOI,文献DOI怎么找? 1705187
邀请新用户注册赠送积分活动 820484
科研通“疑难数据库(出版商)”最低求助积分说明 772090