The End of the Injury Severity Score (ISS) and the Trauma and Injury Severity Score (TRISS)

损伤严重程度评分 修正创伤评分 医学 急诊医学 伤害预防 毒物控制
作者
Robert Rutledge,Turner Osler,Sherry Emery,Sharon Kromhout-Schiro
出处
期刊:Journal of Trauma-injury Infection and Critical Care [Lippincott Williams & Wilkins]
卷期号:44 (1): 41-49 被引量:222
标识
DOI:10.1097/00005373-199801000-00003
摘要

Introduction Since their inception, the Injury Severity Score (ISS) and the Trauma and Injury Severity Score (TRISS) have been suggested as measures of the quality of trauma care. In concept, they are designed to accurately assess injury severity and predict expected outcomes. ICISS, an injury severity methodology based on International Classification of Diseases, Ninth Revision, codes, has been demonstrated to be superior to ISS and TRISS. The purpose of the present study was to compare the ability of TRISS to ICISS as predictors of survival and other outcomes of injury (hospital length of stay and hospital charges). It was our hypothesis that ICISS would outperform ISS and TRISS in each of these outcome predictions. Methods "Training" data for creation of ICISS predictions were obtained from a state hospital discharge data base. "Test" data were obtained from a state trauma registry. ISS, TRISS, and ICISS were compared as predictors of patient survival. They were also compared as indicators of resource utilization by assessing their ability to predict patient hospital length of stay and hospital charges. Finally, a neural network was trained on the ICISS values and applied to the test data set in an effort to further improve predictive power. The techniques were compared by comparing each patient's outcome as predicted by the model to the actual outcome. Results Seven thousand seven hundred five patients had complete data available for analysis. The ICISS was far more likely than ISS or TRISS to accurately predict every measure of outcome of injured patients tested, and the neural network further improved predictive power. Conclusion In addition to predicting mortality, quality tools that can accurately predict resource utilization are necessary for effective trauma center quality-improvement programs. ICISS-derived predictions of survival, hospital charges, and hospital length of stay consistently outperformed those of ISS and TRISS. The neural network-augmented ICISS was even better. This and previous studies demonstrate that TRISS is a limited technique in predicting survival resource utilization. Because of the limitations of TRISS, it should be superseded by ICISS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spiritpope发布了新的文献求助10
刚刚
3秒前
Zp完成签到,获得积分10
5秒前
6秒前
刘铭晨完成签到,获得积分10
7秒前
今后应助初心采纳,获得10
8秒前
神棍喜来乐完成签到,获得积分10
11秒前
踏实的无敌完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
song完成签到 ,获得积分10
13秒前
鸑鷟完成签到,获得积分10
18秒前
20秒前
月亮快打烊吖完成签到 ,获得积分10
22秒前
爱静静应助科研通管家采纳,获得10
23秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
爱静静应助科研通管家采纳,获得10
24秒前
嚭嚭应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
爱静静应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
嚭嚭应助科研通管家采纳,获得10
24秒前
25秒前
寒冷的寒梦完成签到,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
文艺的涵山完成签到 ,获得积分10
32秒前
小莹完成签到 ,获得积分10
33秒前
HuFan1201完成签到 ,获得积分10
35秒前
35秒前
超帅柚子完成签到 ,获得积分10
37秒前
hyeah完成签到,获得积分10
38秒前
非凡完成签到,获得积分10
40秒前
香菜头完成签到 ,获得积分10
42秒前
42秒前
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217343
求助须知:如何正确求助?哪些是违规求助? 3751341
关于积分的说明 11796088
捐赠科研通 3416237
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928788
科研通“疑难数据库(出版商)”最低求助积分说明 837823