迭代函数系统
人工神经网络
计算机科学
班级(哲学)
非线性系统
人工智能
像素
图像(数学)
简单(哲学)
计算
图像压缩
迭代函数
编码(内存)
分形压缩
功能(生物学)
算法
动画
数据压缩
压缩(物理)
分形
图像处理
数学
计算机图形学(图像)
物理
认识论
数学分析
哲学
生物
进化生物学
复合材料
量子力学
材料科学
出处
期刊:Neural Networks
[Elsevier BV]
日期:1991-01-01
卷期号:4 (5): 679-690
被引量:40
标识
DOI:10.1016/0893-6080(91)90021-v
摘要
Iterated Function Systems (IFSs) provide a framework for encoding and generating a large class of fractals. Barnsley has demonstrated their use for image compression, with compression ratios of up to 104: 1. The main limitation of such techniques is the large amount of computation that they require. In this paper we consider a relatively unknown class of methods for generating images using IFSs, and show how these can be formulated as neural networks with one neuron per image pixel. Such networks would be able to generate complex images extremely quickly, and are particularly suitable for real-time animation. While not a conventional application of artificial neural networks, this paper does give a very direct illustration of how a complex nonlinear problem can easily be transformed into a simple class of networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI