特征向量
叠加原理
阻尼矩阵
截断(统计)
流离失所(心理学)
数学
自由度(物理和化学)
基质(化学分析)
数学分析
刚度矩阵
动载试验
基础(线性代数)
响应分析
有限元法
趋同(经济学)
加速度
代表(政治)
几何学
结构工程
物理
经典力学
工程类
材料科学
心理治疗师
经济增长
复合材料
心理学
量子力学
统计
经济
法学
政治学
政治
作者
James M. Ricles,Pierre Léger
标识
DOI:10.1002/cnm.1640091106
摘要
Abstract Structural models of large space structures have a substantial number of degrees of freedom (DOF) and possess semi‐positive‐definite stiffness matrices. The paper presents an efficient co‐ordinate reduction procedure for structural dynamic analysis of large space structures. The method is based on the superposition of load‐dependent Ritz vectors, which are computed in block form using a shifted stiffness matrix. Comparative transient dynamic analyses are performed on a 2803 DOF model of the space station Freedom using the load‐dependent method (LDM) and the mode‐displacement method (MDM) based on the superposition of eigenvectors. It is shown that the LDM is able to provide convergence of displacements with a small number of vectors. The acceleration response is found to be more sensitive to vector truncation than the displacement response. Error norms based on the representation of the dynamic load by the vector basis are developed to provide an indication of the effect of vector truncation on the structural response.
科研通智能强力驱动
Strongly Powered by AbleSci AI