Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information

计算机科学 基因 基因表达 计算生物学 人工智能 推论 表达式(计算机科学)
作者
Xiujun Zhang,Xing-Ming Zhao,Kun He,Le Lu,Yongwei Cao,Jingdong Liu,Jin-Kao Hao,Zhi-Ping Liu,Luonan Chen
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:28 (1): 98-104 被引量:225
标识
DOI:10.1093/bioinformatics/btr626
摘要

Motivation: Reconstruction of gene regulatory networks (GRNs), which explicitly represent the causality of developmental or regulatory process, is of utmost interest and has become a challenging computational problem for understanding the complex regulatory mechanisms in cellular systems. However, all existing methods of inferring GRNs from gene expression profiles have their strengths and weaknesses. In particular, many properties of GRNs, such as topology sparseness and non-linear dependence, are generally in regulation mechanism but seldom are taken into account simultaneously in one computational method. Results: In this work, we present a novel method for inferring GRNs from gene expression data considering the non-linear dependence and topological structure of GRNs by employing path consistency algorithm (PCA) based on conditional mutual information (CMI). In this algorithm, the conditional dependence between a pair of genes is represented by the CMI between them. With the general hypothesis of Gaussian distribution underlying gene expression data, CMI between a pair of genes is computed by a concise formula involving the covariance matrices of the related gene expression profiles. The method is validated on the benchmark GRNs from the DREAM challenge and the widely used SOS DNA repair network in Escherichia coli. The cross-validation results confirmed the effectiveness of our method (PCA-CMI), which outperforms significantly other previous methods. Besides its high accuracy, our method is able to distinguish direct (or causal) interactions from indirect associations. Availability: All the source data and code are available at: http://csb.shu.edu.cn/subweb/grn.htm. Contact:[email protected]; [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满幼珊关注了科研通微信公众号
刚刚
123完成签到,获得积分10
2秒前
佩奇发布了新的文献求助10
3秒前
4秒前
fang发布了新的文献求助10
4秒前
4秒前
所所应助不安的乐松采纳,获得10
6秒前
xxfsx应助斯耐欧采纳,获得20
6秒前
小马甲应助xunlux采纳,获得10
7秒前
李健应助jcx采纳,获得10
7秒前
kai发布了新的文献求助10
7秒前
Zhou完成签到,获得积分10
7秒前
爆米花应助jinjun采纳,获得10
8秒前
科科完成签到,获得积分10
10秒前
zwenng发布了新的文献求助10
11秒前
薄荷蓝完成签到,获得积分10
12秒前
Jamesliu完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
yao关注了科研通微信公众号
16秒前
16秒前
17秒前
17秒前
moneymonoo完成签到,获得积分20
18秒前
酷酷飞机发布了新的文献求助10
18秒前
zhmihep发布了新的文献求助10
20秒前
木木发布了新的文献求助10
20秒前
NGU发布了新的文献求助10
20秒前
jcx发布了新的文献求助10
21秒前
xunlux发布了新的文献求助10
21秒前
完美世界应助淡然的舞仙采纳,获得10
21秒前
白灼虾完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
moneymonoo发布了新的文献求助10
23秒前
加减法完成签到 ,获得积分10
24秒前
徐梓睿完成签到,获得积分10
25秒前
25秒前
小党完成签到,获得积分10
26秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454466
求助须知:如何正确求助?哪些是违规求助? 4561823
关于积分的说明 14283673
捐赠科研通 4485699
什么是DOI,文献DOI怎么找? 2456933
邀请新用户注册赠送积分活动 1447601
关于科研通互助平台的介绍 1422841