A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection

计算机科学 隐私保护 信息隐私 互联网隐私 增强现实 数据科学 1998年数据保护法 人机交互 计算机安全
作者
Qinbin Li,Zeyi Wen,Zhaomin Wu,Sixu Hu,Naibo Wang,Yuan Li,Xu Liu,Bingsheng He
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (4): 3347-3366 被引量:668
标识
DOI:10.1109/tkde.2021.3124599
摘要

Federated learning has been a hot research topic in enabling the collaborative training of machine learning models among different organizations under the privacy restrictions. As researchers try to support more machine learning models with different privacy-preserving approaches, there is a requirement in developing systems and infrastructures to ease the development of various federated learning algorithms. Similar to deep learning systems such as PyTorch and TensorFlow that boost the development of deep learning, federated learning systems (FLSs) are equivalently important, and face challenges from various aspects such as effectiveness, efficiency, and privacy. In this survey, we conduct a comprehensive review on federated learning systems. To achieve smooth flow and guide future research, we introduce the definition of federated learning systems and analyze the system components. Moreover, we provide a thorough categorization for federated learning systems according to six different aspects, including data distribution, machine learning model, privacy mechanism, communication architecture, scale of federation and motivation of federation. The categorization can help the design of federated learning systems as shown in our case studies. By systematically summarizing the existing federated learning systems, we present the design factors, case studies, and future research opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cupid完成签到,获得积分10
1秒前
ccnuliuyujie完成签到,获得积分10
1秒前
圈圈发布了新的文献求助10
1秒前
lixiaolu发布了新的文献求助20
1秒前
小趴蔡完成签到 ,获得积分10
1秒前
3秒前
在水一方应助llg采纳,获得10
4秒前
伍佰发布了新的文献求助10
5秒前
微笑襄发布了新的文献求助10
5秒前
下雨天下雨了完成签到,获得积分10
7秒前
8秒前
9秒前
传奇3应助stt1011采纳,获得10
11秒前
紫愿完成签到 ,获得积分10
11秒前
13秒前
黑煤球完成签到,获得积分10
14秒前
微笑襄发布了新的文献求助10
14秒前
ding应助无情平松采纳,获得10
14秒前
传奇3应助zinc采纳,获得10
14秒前
含蓄的谷梦完成签到,获得积分10
14秒前
syyy发布了新的文献求助10
15秒前
15秒前
yin发布了新的文献求助10
16秒前
ybwei2008_163发布了新的文献求助10
18秒前
18秒前
20秒前
yaolyaotou发布了新的文献求助10
20秒前
20秒前
壮观复天完成签到 ,获得积分10
21秒前
xxx发布了新的文献求助10
21秒前
21秒前
奈布发布了新的文献求助10
21秒前
21秒前
liu66发布了新的文献求助10
22秒前
奕二叁完成签到 ,获得积分10
22秒前
你眼带笑发布了新的文献求助10
23秒前
伏坎关注了科研通微信公众号
23秒前
24秒前
yin完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767