已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Alzheimer’s Patient Analysis Using Image and Gene Expression Data and Explainable-AI to Present Associated Genes

人工智能 支持向量机 卷积神经网络 计算机科学 分类器(UML) 模式识别(心理学) 可信赖性 基因 机器学习 表达式(计算机科学) 微阵列分析技术 人工神经网络 深度学习 上下文图像分类 图像(数学) 数据挖掘 基因表达 计算生物学 生物 遗传学 计算机安全 程序设计语言
作者
Md. Sarwar Kamal,Aden Northcote,Linkon Chowdhury,Nilanjan Dey,Rubén González Crespo,Enrique Herrera‐Viedma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-7 被引量:92
标识
DOI:10.1109/tim.2021.3107056
摘要

There are more than 10 million new cases of Alzheimer's patients worldwide each year, which means there is a new case every 3.2 s. Alzheimer's disease (AD) is a progressive neurodegenerative disease and various machine learning (ML) and image processing methods have been used to detect it. In this study, we used ML methods to classify AD using image and gene expression data. First, SpinalNet and convolutional neural network (CNN) were used to classify AD from MRI images. Then we used microarray gene expression data to classify the diseases using k-nearest neighbors (KNN), support vector classifier (SVC), and Xboost classifiers. Previous approaches used only either images or gene expression, while we used both data together and also explained the results using trustworthy methods. it was difficult to understand how the classifiers predicted the diseases and genes. It would be useful if the results of these classifiers could be explained in a trustworthy way. To establish trustworthy predictive modeling, we introduced an explainable artificial intelligence (XAI) method. The XAI approach we used here is local interpretable model-agnostic explanations (LIME) for a simple human interpretation. LIME interprets how genes were predicted and which genes are particularly responsible for an AD patient. The accuracy of CNN is 97.6%, which is 10.96% higher than the SpinlNet approach. When analyzing gene expression data, SVC provides higher accuracy than other approaches. LIME shows how genes were selected for a particular AD patient and the most important genes for that patient were determined from the gene expression data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到 ,获得积分10
刚刚
beiyuan发布了新的文献求助10
刚刚
他克莫司发布了新的文献求助10
刚刚
天天快乐应助bx采纳,获得10
4秒前
彬彬完成签到,获得积分10
5秒前
5秒前
X先生完成签到 ,获得积分10
6秒前
汉堡包应助子凯采纳,获得10
7秒前
7秒前
Ava应助七月份的表采纳,获得10
7秒前
coolkid应助tjxhtj采纳,获得20
8秒前
星辰大海应助晟sheng采纳,获得10
9秒前
beiyuan完成签到,获得积分10
10秒前
11秒前
DT发布了新的文献求助10
12秒前
熠熠完成签到,获得积分10
13秒前
Orange应助沉静白翠采纳,获得10
15秒前
15秒前
Jasper应助刻苦小鸭子采纳,获得10
15秒前
15秒前
书生发布了新的文献求助10
19秒前
小王完成签到,获得积分20
19秒前
bx发布了新的文献求助10
21秒前
22秒前
22秒前
尊敬的思雁完成签到,获得积分10
23秒前
23秒前
科研通AI5应助书生采纳,获得10
24秒前
卓头OvQ发布了新的文献求助10
26秒前
沉静白翠发布了新的文献求助10
28秒前
29秒前
卓头OvQ完成签到,获得积分10
31秒前
33秒前
柠檬汽水发布了新的文献求助10
35秒前
残幻应助DT采纳,获得10
35秒前
Cccc小懒完成签到,获得积分20
36秒前
37秒前
虚幻白桃发布了新的文献求助60
38秒前
落寞代桃完成签到 ,获得积分10
40秒前
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499