GEFA: Early Fusion Approach in Drug-Target Affinity Prediction

计算机科学 图形 药物重新定位 人工智能 代表(政治) 机器学习 交互网络 特征学习 化学信息学 药品 药物靶点 理论计算机科学 化学 生物信息学 生物 药理学 生物化学 基因 政治 法学 政治学
作者
Tri Minh Nguyen,Thin Nguyen,Thao Minh Le,Truyen Tran
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 718-728 被引量:66
标识
DOI:10.1109/tcbb.2021.3094217
摘要

Predicting the interaction between a compound and a target is crucial for rapid drug repurposing. Deep learning has been successfully applied in drug-target affinity (DTA)problem. However, previous deep learning-based methods ignore modeling the direct interactions between drug and protein residues. This would lead to inaccurate learning of target representation which may change due to the drug binding effects. In addition, previous DTA methods learn protein representation solely based on a small number of protein sequences in DTA datasets while neglecting the use of proteins outside of the DTA datasets. We propose GEFA (Graph Early Fusion Affinity), a novel graph-in-graph neural network with attention mechanism to address the changes in target representation because of the binding effects. Specifically, a drug is modeled as a graph of atoms, which then serves as a node in a larger graph of residues-drug complex. The resulting model is an expressive deep nested graph neural network. We also use pre-trained protein representation powered by the recent effort of learning contextualized protein representation. The experiments are conducted under different settings to evaluate scenarios such as novel drugs or targets. The results demonstrate the effectiveness of the pre-trained protein embedding and the advantages our GEFA in modeling the nested graph for drug-target interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
okghy完成签到 ,获得积分10
刚刚
xuxiaotuan发布了新的文献求助10
2秒前
皮凡发布了新的文献求助10
2秒前
华仔应助清脆的夜白采纳,获得10
2秒前
李心雨完成签到,获得积分20
2秒前
研团团发布了新的文献求助10
2秒前
气味发布了新的文献求助10
2秒前
研友_VZG7GZ应助happystar采纳,获得30
3秒前
Daily完成签到,获得积分10
4秒前
4秒前
250完成签到,获得积分10
4秒前
Yubaibaio完成签到,获得积分10
4秒前
CipherSage应助难过的达采纳,获得10
5秒前
5秒前
5秒前
pluto应助合适小刺猬采纳,获得20
6秒前
SYLH应助宁远采纳,获得10
7秒前
8秒前
可爱的函函应助嗯哼采纳,获得10
8秒前
英姑应助舒适路人采纳,获得10
9秒前
Mira完成签到,获得积分10
9秒前
爱听歌的孤容完成签到 ,获得积分10
9秒前
10秒前
脑洞疼应助一一采纳,获得10
10秒前
tian发布了新的文献求助10
10秒前
CodeCraft应助jakeyjakey采纳,获得10
10秒前
11秒前
excellent发布了新的文献求助10
11秒前
科勒基侈完成签到,获得积分10
12秒前
13秒前
小马甲应助honey采纳,获得10
13秒前
半夏完成签到,获得积分10
13秒前
13秒前
零二发布了新的文献求助10
13秒前
Yuan应助清纯小奶绿采纳,获得10
13秒前
KKKK完成签到,获得积分10
13秒前
香蕉觅云应助dd采纳,获得10
14秒前
14秒前
樊老大卤猪蹄完成签到,获得积分10
14秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786342
求助须知:如何正确求助?哪些是违规求助? 3332114
关于积分的说明 10253906
捐赠科研通 3047419
什么是DOI,文献DOI怎么找? 1672535
邀请新用户注册赠送积分活动 801354
科研通“疑难数据库(出版商)”最低求助积分说明 760143