A Novel Algorithm for Leaf Incidence Angle Effect Correction of Hyperspectral LiDAR

高光谱成像 激光雷达 算法 遥感 波长 叶面积指数 入射角(光学) 光学 计算机科学 数学 物理 地质学 生态学 生物
作者
Jie Bai,Shuai Gao,Zheng Niu,Changsai Zhang,Kaiyi Bi,Gang Sun,Yanru Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-9 被引量:9
标识
DOI:10.1109/tgrs.2021.3070652
摘要

As a novel remote sensor, hyperspectral LiDAR is faced with the incidence angle effect, which restricts its quantitative applications. However, the current radiometric correction algorithms have some limitations, concentrating on: 1) the mathematically polynomial fitting; 2) adjacent wavelength ratio such as ratio vegetation index; and 3) perfect Lambertian assumption and using the Lambert cosine law to correct the effect. In this study, a practical and proper correction algorithm is proposed to overcome these limitations. First, to better characterize the complex reflection characteristics of the object surface, a combination of the Lambert law and Beckmann law is applied to represent the object surface. Then, it considers the impact of both wavelength and incidence angle on describing the surface roughness factor and diffuse fraction. Finally, a modified and physically based radiometric correction algorithm is generated. It provides the detailed correction equations for intensity and reflectance data recorded by hyperspectral LiDAR. To obtain its parameters and verify its reliability, leaves (ten samples per species, 30 in total) were stochastically collected from three broadleaf trees to experiment. The results showed that the algorithm achieved good performances by comparing the intensity and reflectance changes before and after removing the leaf incidence angle effect. Since it is physically based, the algorithm could promisingly be a fundamental solution to eliminate the incidence angle effect for hyperspectral LiDAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助lu_zhqi采纳,获得10
1秒前
Asteroid完成签到 ,获得积分10
1秒前
nianlu完成签到,获得积分10
1秒前
思源应助向晚采纳,获得10
2秒前
JHL发布了新的文献求助10
3秒前
zxx完成签到,获得积分10
3秒前
3秒前
情怀应助BEIBEI采纳,获得20
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
tangzhuojuan完成签到,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
科研通AI5应助冷静冰双采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
不配.应助科研通管家采纳,获得150
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
lgq12697应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070052
求助须知:如何正确求助?哪些是违规求助? 4291260
关于积分的说明 13369921
捐赠科研通 4111515
什么是DOI,文献DOI怎么找? 2251558
邀请新用户注册赠送积分活动 1256731
关于科研通互助平台的介绍 1189263