Inspired by “quenching-cracking” strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries

材料科学 电极 电解质 化学工程 流动电池 纤维 电池(电) 储能 电流密度 纳米技术 复合材料 冶金 功率(物理) 热力学 物理 工程类 物理化学 化学 量子力学
作者
Zeyu Xu,Mingdong Zhu,Kaiyue Zhang,Xihao Zhang,XU Li-xin,Jianguo Liu,Tao Liu,Chuanwei Yan
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:39: 166-175 被引量:60
标识
DOI:10.1016/j.ensm.2021.04.025
摘要

Vanadium redox flow batteries (VRFBs) are perceived as promising candidates for grid-scale energy storage systems. However, limited improvements in electrode structures restrict the operation of VRFBs at high current densities. Herein, finite element simulations are used to guide the construction direction of the electrode structure. Afterwards, a quenching-cracking strategy is ingeniously employed to successfully construct parallel-aligned micron flow channels on electrode fibers in high agreement with the model, and the consistency of the flow channel structure is verified via deep learning technique. The well-constructed flow channels achieve high specific surface areas of electrodes while enabling the smooth flow of electrolyte over the fiber surfaces. Subsequent graphitization and sulfur-doping processes yield hierarchical fibers with highly conductive cores and well-active surfaces. Benefiting from fine structural modulation, the battery equipped with the as-prepared electrodes delivers an energy efficiency of 80.44 % at an ultra-high current density of 500 mA cm−2 and achieves a peak power density of 1.68 W cm−2. Additionally, the battery is consistently cycled for 1000 cycles at 500 mA cm−2 and the average energy efficiency decay is only 0.01032 % per cycle. Notably, finite element simulations are applied to investigate the velocity distribution of electrolyte in the flow channels, and first-principle calculations are employed to reveal the cause for energy efficiency decay of the battery after long-term cycling. Most importantly, the establishment of structure-activity relationships highlights the significance of comprehensive modulation of electrode fiber structures towards enhancing the performance of VRFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gggirl发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
六芒星发布了新的文献求助20
3秒前
BO完成签到,获得积分10
3秒前
炙热晓露发布了新的文献求助10
3秒前
余鱼鱼完成签到,获得积分10
3秒前
万能图书馆应助nenoaowu采纳,获得10
4秒前
科研通AI5应助嘿嘿嘿采纳,获得10
5秒前
万能图书馆应助龚心茹采纳,获得10
5秒前
洁净笑白完成签到,获得积分10
6秒前
桐桐应助dali采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Adream完成签到 ,获得积分10
7秒前
7秒前
顾矜应助药学虫采纳,获得10
8秒前
机智的朋友完成签到,获得积分10
9秒前
萌萌麻麻完成签到,获得积分20
10秒前
温婉的如波完成签到,获得积分10
10秒前
浮游应助Alina1874采纳,获得20
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
狸子发布了新的文献求助10
12秒前
13秒前
kkk完成签到,获得积分10
13秒前
爱吃西瓜圆滚滚完成签到,获得积分10
13秒前
Adream关注了科研通微信公众号
14秒前
15秒前
123发布了新的文献求助10
15秒前
嘿嘿嘿发布了新的文献求助10
17秒前
xzf1996发布了新的文献求助10
18秒前
深味i完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
结实小土豆完成签到,获得积分20
20秒前
21完成签到,获得积分10
20秒前
小小只完成签到,获得积分10
20秒前
xiaoranzi6661完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677742
求助须知:如何正确求助?哪些是违规求助? 4054992
关于积分的说明 12538820
捐赠科研通 3749215
什么是DOI,文献DOI怎么找? 2070899
邀请新用户注册赠送积分活动 1099875
科研通“疑难数据库(出版商)”最低求助积分说明 979449