Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells.

多重耐药 谷胱甘肽转移酶 谷胱甘肽 谷胱甘肽S-转移酶 癌症研究 人体乳房 化学 癌症 乳腺癌 转移酶 分子生物学 生物 生物化学 遗传学 抗生素
作者
Gerald Batist,Anil Tulpule,Birandra K. Sinha,Aspandiar G. Katki,Charles E. Myers,Kenneth H. Cowan
出处
期刊:Journal of Biological Chemistry [Elsevier BV]
卷期号:261 (33): 15544-15549 被引量:791
标识
DOI:10.1016/s0021-9258(18)66748-1
摘要

Adriamycin-resistant (AdrR) human breast cancer cells have been selected which exhibit cross-resistance to a wide range of anti-cancer drugs. This multidrug-resistant phenotype is associated with increases in the activities of glutathione peroxidase and glutathione transferase. The 45-fold increase in glutathione transferase activity is associated with the appearance of a new anionic isozyme in AdrR cells which is immunologically related to the anionic glutathione transferase present in human placenta. The increase in transferase and the level of drug resistance is relatively stable during passage of AdrR cells in the absence of adriamycin for over 10 months. A similar anionic glutathione transferase isozyme is also found in rat hyperplastic liver nodules, a preneoplastic state resulting from exposure to carcinogens. A rat cDNA which codes for the anionic glutathione transferase in rat hyperplastic nodules hybridizes to a 1.1-kilobase pair mRNA which is overexpressed in the AdrR MCF-7 cells. The anionic transferase has been purified from the AdrR cells and found to have characteristics which distinguish it from other anionic human glutathione transferases, including high levels of intrinsic peroxidase activity. The overexpression of a similar anionic glutathione transferase in human breast cancer cells selected for multidrug resistance and in rat hyperplastic liver nodules, which develop resistance to various hepatotoxins, suggests a possible role for this drug-conjugating enzyme in the mechanism of resistance in both of these states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
科研通AI5应助小吴采纳,获得10
3秒前
今天要开心完成签到,获得积分20
3秒前
JamesPei应助zhang005on采纳,获得10
4秒前
4秒前
皮皮球完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
wxyes发布了新的文献求助10
6秒前
7秒前
7秒前
纳的瓦U币发hi完成签到,获得积分10
7秒前
郭优秀完成签到,获得积分10
7秒前
卡尔拉完成签到,获得积分10
8秒前
科研通AI5应助酥酥采纳,获得10
8秒前
9秒前
MchemG应助zhenjl采纳,获得10
9秒前
大苏打完成签到,获得积分10
9秒前
烂漫半梅发布了新的文献求助10
10秒前
10秒前
叶成帷发布了新的文献求助10
11秒前
conor发布了新的文献求助10
11秒前
11秒前
PG完成签到 ,获得积分10
11秒前
超级铅笔发布了新的文献求助10
12秒前
Accepted应助酷酷凡双采纳,获得10
12秒前
1123发布了新的文献求助10
12秒前
12秒前
h w wang发布了新的文献求助150
12秒前
潇洒的若烟完成签到,获得积分10
12秒前
醉林发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813459
求助须知:如何正确求助?哪些是违规求助? 3357801
关于积分的说明 10388583
捐赠科研通 3075042
什么是DOI,文献DOI怎么找? 1689136
邀请新用户注册赠送积分活动 812578
科研通“疑难数据库(出版商)”最低求助积分说明 767210