Distributionally Robust Stochastic Optimization with Wasserstein Distance

数学 稳健优化 数学优化 概率分布 最优化问题 集合(抽象数据类型) 对偶(序理论) 分布(数学) 随机优化 口译(哲学) 计算机科学 组合数学 统计 数学分析 程序设计语言
作者
Rui Gao,Anton J. Kleywegt
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:48 (2): 603-655 被引量:448
标识
DOI:10.1287/moor.2022.1275
摘要

Distributionally robust stochastic optimization (DRSO) is an approach to optimization under uncertainty in which, instead of assuming that there is a known true underlying probability distribution, one hedges against a chosen set of distributions. In this paper, we first point out that the set of distributions should be chosen to be appropriate for the application at hand and some of the choices that have been popular until recently are, for many applications, not good choices. We next consider sets of distributions that are within a chosen Wasserstein distance from a nominal distribution. Such a choice of sets has two advantages: (1) The resulting distributions hedged against are more reasonable than those resulting from other popular choices of sets. (2) The problem of determining the worst-case expectation over the resulting set of distributions has desirable tractability properties. We derive a strong duality reformulation of the corresponding DRSO problem and construct approximate worst-case distributions (or an exact worst-case distribution if it exists) explicitly via the first-order optimality conditions of the dual problem. Our contributions are fourfold. (i) We identify necessary and sufficient conditions for the existence of a worst-case distribution, which are naturally related to the growth rate of the objective function. (ii) We show that the worst-case distributions resulting from an appropriate Wasserstein distance have a concise structure and a clear interpretation. (iii) Using this structure, we show that data-driven DRSO problems can be approximated to any accuracy by robust optimization problems, and thereby many DRSO problems become tractable by using tools from robust optimization. (iv) Our strong duality result holds in a very general setting. As examples, we show that it can be applied to infinite dimensional process control and intensity estimation for point processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ash完成签到,获得积分10
刚刚
1秒前
1秒前
酷波er应助26blue采纳,获得10
2秒前
好好好完成签到,获得积分10
3秒前
3秒前
Akim应助所以是雪梨采纳,获得10
4秒前
踏实青槐发布了新的文献求助10
5秒前
5秒前
可爱的函函应助Cino采纳,获得10
6秒前
6秒前
不安映秋完成签到,获得积分10
6秒前
微眠发布了新的文献求助10
7秒前
研友_LOKXmL完成签到,获得积分10
8秒前
所所应助Hey采纳,获得10
8秒前
9秒前
黄科关注了科研通微信公众号
9秒前
9秒前
10秒前
weiyi发布了新的文献求助10
10秒前
汉堡包应助believe采纳,获得10
11秒前
13秒前
Hrx完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
Akim应助weiyi采纳,获得10
16秒前
科研通AI5应助飘逸晓山采纳,获得10
17秒前
17秒前
18秒前
19秒前
bkagyin应助机智思真采纳,获得10
19秒前
自信鞯发布了新的文献求助10
20秒前
虚幻德地完成签到,获得积分10
20秒前
20秒前
zzz发布了新的文献求助30
21秒前
22秒前
桐桐应助柔弱碧菡采纳,获得10
22秒前
Yy123发布了新的文献求助10
22秒前
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079331
求助须知:如何正确求助?哪些是违规求助? 3618642
关于积分的说明 11484460
捐赠科研通 3335016
什么是DOI,文献DOI怎么找? 1833255
邀请新用户注册赠送积分活动 902532
科研通“疑难数据库(出版商)”最低求助积分说明 821125