Forecast of individual customer’s demand from a large and noisy dataset

市场细分 计算机科学 交易数据 需求预测 数据挖掘 数据库事务 人口 供应链 相似性(几何) 分割 供应链管理 运筹学 人工智能 工程类 营销 数据库 业务 人口学 社会学 图像(数学)
作者
Paul W. Murray,Bruno Agard,Marco Barajas
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:118: 33-43 被引量:45
标识
DOI:10.1016/j.cie.2018.02.007
摘要

Optimization of the supply chain relates on data that describes actual or future situation. Besides in many situations available data may not correspond directly to what is expected for the different models because of too large quantity and imprecision of the data that may lead to suboptimal or even bad decisions. Actual problem considers the availability of a large and noisy dataset concerning historical information about each customer that will be used to make improved prediction models, that may fit models to optimize the supply chain. When dealing with large datasets, market segmentation is frequently employed in business forecasting; many customers are grouped based on some measure of similarity. Segment-level forecasting is then employed to represent the population within each segment. Challenges with successfully applying market segmentation include how to create segments when descriptive customer information is lacking and how to apply the segment-level demand forecasts to individual customers. This research proposes a method to create customer segments based on noisy historical transaction data, create segment-level forecasts, and then apply the forecasts to individual customers. The proposed method utilizes existing data mining and forecasting tools, but applies them in a unique combination that results in a higher level of customer-level forecast accuracy than other traditional methods. The proposed forecasting method has significant management applications in any domain where forecasts are needed for a large population of customers and the only available data is delivery data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱来完成签到,获得积分10
1秒前
小蘑菇应助初余采纳,获得10
1秒前
鹿c3完成签到,获得积分10
2秒前
幽默宛亦发布了新的文献求助10
4秒前
8秒前
9秒前
9秒前
AAA完成签到,获得积分10
10秒前
11秒前
顾矜应助ahu采纳,获得30
13秒前
Cindy发布了新的文献求助30
13秒前
14秒前
15秒前
伍六七完成签到,获得积分10
15秒前
白羽佳发布了新的文献求助30
20秒前
Cindy完成签到,获得积分10
20秒前
从容道罡完成签到,获得积分10
20秒前
poppysss完成签到,获得积分10
21秒前
科研通AI2S应助JiegeSCI采纳,获得10
22秒前
28秒前
俊鱼完成签到,获得积分10
28秒前
JJ完成签到,获得积分10
29秒前
Krim完成签到 ,获得积分10
30秒前
妇产科医生完成签到 ,获得积分10
31秒前
to高坚果发布了新的文献求助10
32秒前
水木年华完成签到,获得积分10
33秒前
WindDreamer完成签到,获得积分10
33秒前
兰天完成签到,获得积分10
33秒前
傲娇的雁菱完成签到,获得积分10
33秒前
阿甘完成签到,获得积分10
34秒前
白羽佳完成签到,获得积分20
36秒前
Ava应助无语的冷风采纳,获得10
38秒前
jiangqin123完成签到 ,获得积分10
38秒前
lilacs完成签到 ,获得积分10
38秒前
5555完成签到,获得积分20
39秒前
史迪奇完成签到,获得积分10
40秒前
42秒前
六沉完成签到 ,获得积分10
46秒前
香蕉觅云应助玉汝于成采纳,获得10
49秒前
月亮在o完成签到 ,获得积分10
49秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409