数学
分数阶微积分
趋同(经济学)
应用数学
理论(学习稳定性)
格朗沃尔不等式
衍生工具(金融)
不平等
工作(物理)
类型(生物学)
班级(哲学)
数学分析
计算机科学
经济增长
机械工程
生物
金融经济学
机器学习
工程类
人工智能
经济
生态学
作者
Hong-lin Liao,William McLean,Jiwei Zhang
摘要
We consider a class of numerical approximations to the Caputo fractional\nderivative. Our assumptions permit the use of nonuniform time steps, such as is\nappropriate for accurately resolving the behavior of a solution whose\nderivatives are singular at~$t=0$. The main result is a type of fractional\nGr\\"{o}nwall inequality and we illustrate its use by outlining some stability\nand convergence estimates of schemes for fractional reaction-subdiffusion\nproblems. This approach extends earlier work that used the familiar L1\napproximation to the Caputo fractional derivative, and will facilitate the\nanalysis of higher order and linearized fast schemes.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI