Simulating Macro-Level Effects from Micro-Level Observations

启发式 复制 计算机科学 集合(抽象数据类型) 领域(数学) 实证研究 管理科学 人工智能 数据科学 经济 哲学 操作系统 认识论 程序设计语言 纯数学 统计 数学
作者
Edward B. Smith,William Rand
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:64 (11): 5405-5421 被引量:47
标识
DOI:10.1287/mnsc.2017.2877
摘要

We consider the fruits of integrating agent-based modeling (ABM) with lab-based experimental research with human subjects. While both ABM and lab experiments have similar aims—to identify the rules, tendencies, and heuristics by which individual agents make decisions and respond to external stimuli—they work toward their common goal in notably different ways. Behavioral-lab research typically exposes human subjects to experimental manipulations, or treatments, to make causal inferences by observing variation in response to the treatment. ABM researchers ascribe individual simulated “agents” with decision rules describing their behavior and subsequently attempt to replicate “macro” level empirical patterns. Integration of ABM and lab experiments presents advantages for both sets of researchers. ABM researchers will benefit from exposure to a larger set of empirically validated mechanisms that can add nuance and refinement to their models of human behavior and system dynamics. Lab-oriented researchers will gain from ABM a method for assessing the validity and magnitude of their findings, adjudicating between competing mechanisms, developing new theory to test in the lab, and exploring macro-level, long-run implications of subtle, micro-level observations that can be difficult to observe in the field. We offer an example of this mixed-method approach related to status, social networks, and job search and issue guidance for future research attempting such integration. The online appendix is available at https://doi.org/10.1287/mnsc.2017.2877 . This paper was accepted by Yuval Rottenstreich, judgment and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助傅诗淇采纳,获得10
1秒前
Spy_R发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
慕青应助林雯青采纳,获得10
2秒前
2秒前
3秒前
3秒前
xiayiyi完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
Sunny发布了新的文献求助30
6秒前
11_aa完成签到 ,获得积分10
6秒前
6秒前
cc发布了新的文献求助10
7秒前
hoshi完成签到,获得积分20
7秒前
眼睛大芙发布了新的文献求助10
7秒前
ZhaoY完成签到,获得积分10
7秒前
华仔应助WYN采纳,获得10
7秒前
小兵大大怪完成签到,获得积分10
7秒前
7秒前
华仔应助rockxie采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
nmamtf发布了新的文献求助30
8秒前
Shelby发布了新的文献求助10
9秒前
9秒前
紧张的紫文完成签到,获得积分10
9秒前
爆米花应助过时的广缘采纳,获得10
9秒前
zxl完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
11秒前
小蘑菇应助时尚的幻灵采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769