阿佩林
伊诺斯
蛋白激酶B
血管生成
医学
内科学
缺血
心脏病学
心肌梗塞
血管内皮生长因子
内分泌学
一氧化氮合酶
化学
一氧化氮
磷酸化
受体
血管内皮生长因子受体
生物化学
作者
Lanfang Li,Heng Zeng,Jian‐Xiong Chen
标识
DOI:10.1161/res.111.suppl_1.a145
摘要
Background: Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and is emerging as a key player in the regulation of angiogenesis as well as ischemia/reperfusion injury. So far, little is known about the functional role of apelin in myocardial ischemia. We investigated the potential intracellular molecular mechanisms and protective role of apelin during myocardial ischemic injury. Methods and Results: Myocardial ischemia was achieved by ligation of the left anterior descending coronary artery (LAD) for 24 hours and 14 days. Myocardial apoptosis was detected by TUNEL staining. Akt, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), SDF-1 and CXCR4 expression were measured by western blot. The CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells were determined by immunostaining. Myocardial capillary and arteriole densities were analyzed in the border zone of infarcted myocardium at 14 d of ischemia. Treatment of C57BL/6J mice with apelin-13 (1 mg/Kg.d) by i.p. injection for 3 days before surgery results in significant decreases in TUNEL positive cells and myocardial infarct size at 24 hours of ischemia. Treatment with apelin increases the phosphorylation of AKT and eNOS and upregulates VEGF expression in the ischemic heart. Furthermore, treatment with apelin leads to the expression of SDF-1 and CXCR4 and increases in the number of CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells in ischemic hearts. Treatment with apelin also significantly increases myocardial capillary densities and arteriole formation together with a significant decrease in the ratio of heart weight to body weight at 14 days of ischemia. This is accompanied by a significant improvement of cardiac function after 14 days of ischemia. Conclusions: Our data demonstrate that apelin contributes to the protection of myocardial infarction and angiogenesis by the mechanisms involving in upregulation of SDF-1/CXCR4 and AKT/eNOS/VEGF pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI