电子转移
过氧二硫酸盐
材料科学
催化作用
等结构
密度泛函理论
降级(电信)
化学物理
纳米技术
价(化学)
电子受体
质子耦合电子转移
工作(物理)
氢
金属有机骨架
电子
金属
地下水修复
电子传输链
化学工程
化学
接受者
氧化还原
纳米颗粒
分子
活动站点
电子结构
电子供体
分子动力学
作者
Fei Wang,Yanfang Li,Fu-Xue Wang,Chong-Chen Wang,Ya Gao,Xiao-Hong Yi,Wei-Jian Yu,P. Wang,Mingyi Liu,Haodong Ji,Yifei Sun,Wen Liu
标识
DOI:10.1038/s41467-026-68917-z
摘要
While extensive efforts have been devoted to enhancing electron transfer efficiency through metal valence cycling in heterogeneous Fenton-like reactions, the potential catalytic improvement induced by dynamic structural stretching remain unexplored. Here, we introduce a homointerpenetrated Fe-based metal‒organic framework (BUC-95) featuring a dynamic stretchable structure that significantly boosts the heterogeneous Fenton-like catalytic performance. BUC-95's unique stretchable structure achieved effective peroxydisulfate activation for degrading various micropollutants via Fe(IV) = O species, facilitated by a reduced energy barrier for Fe(IV) = O formation through modulation of the electron density at Fe sites. DFT calculations suggest that, compared with the isostructural analogue with hydrogen bond-restricted stretching, the flexible dynamic stretching in BUC-95 overcomes the inherent electron transfer limitations from Fe sites to peroxydisulfate, enhancing the ofloxacin degradation performance. Practically, BUC-95 demonstrated effective continuous-flow degradation and detoxification of micropollutants. This work establishes dynamic stretching as a crucial design principle for advancing environmental remediation materials and technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI