稳健性(进化)
控制理论(社会学)
计算机科学
PID控制器
纳什均衡
路径(计算)
博弈论
鲁棒控制
能量(信号处理)
最优化问题
跟踪(教育)
最优控制
高效能源利用
运动规划
自适应控制
过程(计算)
稳健优化
控制(管理)
数学优化
量子
控制系统
多目标优化
滑模控制
控制器(灌溉)
弹道
系统动力学
最佳反应
作者
Xinhao Huang,Yongzheng Li,B. Wang,Liting Ding,Z. Chen,K. Liu
摘要
To address the challenge that unmanned surface vehicles (USVs) struggle to effectively balance tracking accuracy, control smoothness, and system energy efficiency under external disturbances, this paper proposes an anti-disturbance path tracking control method integrating quantum-inspired optimization (QIO) and dynamic game theory (GT). The proposed control method consists of a two-layer optimization architecture: the upper layer employs dynamic game theory to optimize the guidance process, modeling the optimization of the look-ahead distance (Ld) and switching radius (R) in the LOS guidance algorithm as a non-cooperative game, and achieves adaptive adjustment to path variations and environmental disturbances by solving for the Nash equilibrium. The lower layer, based on a quantum-inspired optimization algorithm, enhances the control process by employing quantum bit probability amplitude encoding for the PID parameter space and utilizing a quantum rotation gate mechanism for efficient global search, thereby achieving online self-tuning of PID parameters under environmental disturbances. Simulation results indicate that, under sea conditions with external disturbances, the proposed method achieves a superior balance among tracking accuracy, control smoothness, and system energy efficiency compared to the traditional fixed-parameter PID-LOS approach, enhancing the comprehensive anti-disturbance robustness of the USV.
科研通智能强力驱动
Strongly Powered by AbleSci AI