Using machine learning approach to predict depression and anxiety among patients with epilepsy in China: A cross-sectional study

焦虑 癫痫 萧条(经济学) 接收机工作特性 随机森林 心理学 机器学习 人工智能 精神科 临床心理学 计算机科学 宏观经济学 经济
作者
Zihan Wei,Xinpei Wang,Lei Ren,Chang Liu,Chao Liu,Mi Cao,Yan Feng,Yanjing Gan,Guoyan Li,Xufeng Liu,Yonghong Liu,Lei Yang,Yanchun Deng
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:336: 1-8 被引量:16
标识
DOI:10.1016/j.jad.2023.05.043
摘要

Anxiety and depression are the most prevalent comorbidities among epilepsy patients. The screen and diagnosis of anxiety and depression are quite important for the management of patients with epilepsy. In that case, the method for accurately predicting anxiety and depression needs to be further explored. A total of 480 patients with epilepsy (PWE) were enrolled in our study. Anxiety and Depressive symptoms were evaluated. Six machine learning models were used to predict anxiety and depression in patients with epilepsy. Receiver operating curve (ROC), decision curve analysis (DCA) and moDel Agnostic Language for Exploration and eXplanation (DALEX) package were used to evaluate the accuracy of machine learning models. For anxiety, the area under the ROC curve was not significantly different between models. DCA revealed that random forest and multilayer perceptron has the largest net benefit within different probability threshold. DALEX revealed that random forest and multilayer perceptron were models with best performance and stigma had the highest feature importance. For depression, the results were much the same. Methods created in this study may offer much help identifying PWE with high risk of anxiety and depression. The decision support system may be valuable for the everyday management of PWE. Further study is needed to test the outcome of applying this system to clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研虎完成签到,获得积分10
2秒前
苒苒完成签到,获得积分10
2秒前
mini发布了新的文献求助10
3秒前
碧蓝亦玉完成签到,获得积分10
4秒前
脑洞疼应助壮观的白枫采纳,获得10
4秒前
5秒前
科研通AI5应助大方研究生采纳,获得10
5秒前
6秒前
7秒前
YJ888完成签到,获得积分10
8秒前
9秒前
nadskuhkC完成签到,获得积分10
10秒前
jin发布了新的文献求助10
10秒前
刘太狼发布了新的文献求助10
10秒前
星辰大海应助郭富县城采纳,获得10
11秒前
12秒前
ziz发布了新的文献求助10
12秒前
13秒前
赘婿应助zhk采纳,获得10
14秒前
小慧儿发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
15秒前
夏明浩发布了新的文献求助10
15秒前
15秒前
cencen完成签到 ,获得积分10
15秒前
科研通AI5应助llll采纳,获得10
15秒前
16秒前
16秒前
温暖焱发布了新的文献求助10
16秒前
NexusExplorer应助LXK采纳,获得10
17秒前
18秒前
七分糖发布了新的文献求助10
18秒前
搜集达人应助Archer采纳,获得10
18秒前
成就书雪完成签到,获得积分0
19秒前
20秒前
Fox完成签到,获得积分20
21秒前
shlw发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810645
求助须知:如何正确求助?哪些是违规求助? 3355157
关于积分的说明 10374593
捐赠科研通 3071895
什么是DOI,文献DOI怎么找? 1687098
邀请新用户注册赠送积分活动 811441
科研通“疑难数据库(出版商)”最低求助积分说明 766652