Single Exosome Amperometric Measurements Reveal Encapsulation of Chemical Messengers for Intercellular Communication

微泡 胞吐 第二信使系统 化学 外体 细胞内 细胞生物学 小泡 细胞信号 生物 信号转导 分泌物 生物化学 小RNA 基因
作者
Keke Hu,Kim Long Le Vo,Fan Wang,Xin Zhang,Chaoyi Gu,Ning Fang,Nhu T. N. Phan,Andrew G. Ewing
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (21): 11499-11503 被引量:14
标识
DOI:10.1021/jacs.3c02844
摘要

In multicellular organisms, cells typically communicate by sending and receiving chemical signals. Chemical messengers involved in the exocytosis of neuroendocrine cells or neurons are generally assumed to only originate from the fusing of intracellular large dense core vesicles (LDCVs) or synaptic vesicles with the cellular membrane following stimulation. Accumulated evidence suggests that exosomes─one of the main extracellular vesicles (EVs)─carrying cell-dependent DNA, mRNA, proteins, etc., play an essential role in cellular communication. Due to experimental limitations, it has been difficult to monitor the real-time release of individual exosomes; this restricts a comprehensive understanding of the basic molecular mechanisms and the functions of exosomes. In this work, we introduce amperometry with microelectrodes to capture the dynamic release of single exosomes from a single living cell, distinguish them from other EVs, and differentiate the molecules inside exosomes and those secreted from LDCVs. We show that, similar to many LDCVs and synaptic vesicles, exosomes released by neuroendocrine cells also contain catecholamine transmitters. This finding reveals a different mode of chemical communication via exosome-encapsulated chemical messengers and a potential interconnection between the two release pathways, changing the canonical view of exocytosis of neuroendocrine cells and possibly neurons. This defines a new mechanism for chemical communication at the fundamental level and opens new avenues in the research of the molecular biology of exosomes in the neuroendocrine and central nervous systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟完成签到,获得积分10
1秒前
Sor完成签到,获得积分10
2秒前
Broadway Zhang完成签到,获得积分10
3秒前
Sor发布了新的文献求助10
4秒前
ipcy完成签到 ,获得积分10
4秒前
发论文发布了新的文献求助10
4秒前
6秒前
9秒前
lilili完成签到,获得积分10
10秒前
Helium发布了新的文献求助10
11秒前
科研通AI5应助刘小雨采纳,获得10
11秒前
cen发布了新的文献求助10
15秒前
研友_VZG7GZ应助CT采纳,获得10
17秒前
科研通AI5应助共行采纳,获得10
19秒前
菠萝完成签到 ,获得积分10
19秒前
20秒前
21秒前
23秒前
23秒前
Jasper应助科研通管家采纳,获得10
24秒前
HEIKU应助科研通管家采纳,获得10
24秒前
HEIKU应助科研通管家采纳,获得10
24秒前
zmnzmnzmn应助科研通管家采纳,获得10
24秒前
HEIKU应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
HEIKU应助科研通管家采纳,获得10
25秒前
666感冒灵发布了新的文献求助10
25秒前
zho应助科研通管家采纳,获得10
25秒前
HEIKU应助科研通管家采纳,获得10
25秒前
25秒前
HEIKU应助科研通管家采纳,获得10
25秒前
HEIKU应助科研通管家采纳,获得10
25秒前
zmnzmnzmn应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
26秒前
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440