Fault diagnosis of axial piston pump based on multi-source subdomain adaptation and sensor data fusion

传感器融合 断层(地质) 融合 活塞(光学) 适应(眼睛) 计算机科学 人工智能 地质学 物理 地震学 语言学 光学 哲学 波前
作者
Hongbin Tang,Yangchun Gong,Jingnan Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086209-086209 被引量:2
标识
DOI:10.1088/1361-6501/ad42c3
摘要

Abstract The axial piston pump is the core component in hydraulic systems. Its condition monitoring and fault diagnosis are crucial to ensure the safe and reliable operation of hydraulic systems. However, most of the existing fault diagnosis methods for axial piston pumps use the same working condition data. In actual operation, axial piston pump often experience varying loads, and the collected data is typically correlated but has different distributions. Therefore, a transfer learning method of multi-source subdomain adaptation and sensor fusion (MSASF) is proposed for fault diagnosis of axial piston pump. The proposed MSASF has three modules, a shared feature extraction module, a domain-specific feature extraction module and an output decision module. Firstly, the adaptive weighted fusion of multi-sensor data features is realized by the shared feature extraction module and the common features of multi-source heterogeneous data are extracted. Secondly, in the domain-specific feature extraction module, multi-branch network is used to extract features of each pair of source and target domains and the local maximum mean difference is utilized to align the sub-domain distribution of each pair of source and target domains. Finally, in the output decision module, the distribution distance between each pair of source domain and target domain is calculated using maximum mean discrepancy to obtain its weighted score. Combined with the classification output of each source domain, the final diagnosis decision is made. A dataset was constructed for the axial piston pump design fault experiment, and four sets of transfer tasks were designed to compare with those of seven classic methods. The experimental results showed that the proposed MSASF method exhibits a superior domain adaptation effect and fault diagnosis performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助Tico采纳,获得10
2秒前
2秒前
科研通AI5应助祯果粒采纳,获得10
3秒前
科研木头人完成签到 ,获得积分10
4秒前
5秒前
6秒前
生动的战斗机完成签到,获得积分10
7秒前
夸父完成签到,获得积分10
7秒前
火星上的蜡烛完成签到,获得积分10
7秒前
JamesPei应助5430采纳,获得200
7秒前
廖紊完成签到,获得积分10
7秒前
jmchen发布了新的文献求助10
8秒前
因一发布了新的文献求助10
8秒前
西音完成签到,获得积分10
8秒前
王小新完成签到,获得积分10
8秒前
bodhi完成签到,获得积分10
9秒前
跳跃绮山发布了新的文献求助20
9秒前
打打应助_ban采纳,获得10
9秒前
cdercder应助kingwill采纳,获得30
9秒前
SciGPT应助夜已深采纳,获得10
9秒前
Totoro发布了新的文献求助10
10秒前
empty发布了新的文献求助10
13秒前
李健的小迷弟应助baomingqiu采纳,获得10
13秒前
15秒前
佚名完成签到 ,获得积分10
16秒前
因一完成签到,获得积分10
18秒前
顾矜应助Os1采纳,获得10
19秒前
很多奶油发布了新的文献求助10
20秒前
跳跃绮山完成签到,获得积分10
20秒前
lee发布了新的文献求助10
21秒前
21秒前
meng发布了新的文献求助10
21秒前
依地酸二钠完成签到,获得积分10
22秒前
脑洞疼应助坚强紫山采纳,获得10
23秒前
XX完成签到 ,获得积分10
24秒前
24秒前
24秒前
哈哈完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225