Fitting Discrete-Time Dynamic Models Having Any Time Interval

区间(图论) 离散时间和连续时间 数学 统计 应用数学 计算机科学 组合数学
作者
Marc E. McDill,Ralph L. Amateis
出处
期刊:Forest Science [Oxford University Press]
卷期号:39 (3): 499-519 被引量:14
标识
DOI:10.1093/forestscience/39.3.499
摘要

Abstract When the desired time interval of a difference equation is not the same as the interval at which the data used to fit the equation were collected (the measurement interval), some kind of interpolation method is necessary before fitting. Linear growth assumptions, which are often used for such interpolations, are almost always inconsistent with the growth function that is estimated and can lead to biased growth projections. A more logical approach is to use the hypothesized functional form of the difference equation as the basis for interpolation. Two interpolation methods based on this approach are presented. With one method, both the interpolation and the parameter estimation steps are implemented simultaneously. The second method implements the interpolation and parameter estimation steps separately and requires repeated model fittings until consistency is obtained between both steps. The procedures are demonstrated using a tree height growth example. Results are compared with an integrated, continuous-time version of the growth model that can be fitted without interpolation. Growth projections obtained with the proposed interpolation methods are closer to the projections obtained with the integrated, continuous-time model than projections obtained with other commonly used interpolation methods. A simple Monte Carlo analysis showed that two common interpolation methods based on linear assumptions produce biased parameter estimates but failed to show any bias in the parameter estimates obtained with the proposed methods. Parameter estimates obtained with the new interpolation methods converge to limiting values as the time interval of the difference equation is shortened. These limiting values can be used as estimates of the parameters of continuous-time versions of the growth model. For. Sci. 39(3):499-519.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘完成签到,获得积分10
刚刚
2秒前
Gaojin锦完成签到,获得积分10
9秒前
bono完成签到 ,获得积分10
9秒前
xiaoyu发布了新的文献求助10
9秒前
dailuer完成签到,获得积分20
9秒前
gina完成签到,获得积分10
12秒前
失眠的易绿完成签到 ,获得积分10
13秒前
在水一方应助azami采纳,获得10
13秒前
13秒前
南吕完成签到,获得积分10
14秒前
思源应助hyhyhyhy采纳,获得10
15秒前
宁静致远完成签到,获得积分10
15秒前
快了科研发布了新的文献求助10
19秒前
ldgsd完成签到,获得积分10
19秒前
19秒前
20秒前
ZZZZ关注了科研通微信公众号
20秒前
25秒前
小马奔奔完成签到,获得积分10
27秒前
00小费0发布了新的文献求助10
28秒前
等待黎明完成签到,获得积分10
28秒前
梦在远方完成签到 ,获得积分10
30秒前
Orange应助橙子采纳,获得20
33秒前
WeiBao发布了新的文献求助10
33秒前
搜集达人应助00小费0采纳,获得10
34秒前
爆米花应助快乐的浩轩采纳,获得10
36秒前
ZZZZ发布了新的文献求助10
37秒前
毕长富完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
42秒前
42秒前
快了科研完成签到,获得积分10
46秒前
MinasTirith发布了新的文献求助10
46秒前
长耳尾发布了新的文献求助10
47秒前
Mlord完成签到,获得积分10
48秒前
48秒前
hualuo关注了科研通微信公众号
48秒前
烟雨梦兮发布了新的文献求助10
50秒前
CAOHOU完成签到,获得积分0
50秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977792
求助须知:如何正确求助?哪些是违规求助? 3521968
关于积分的说明 11210815
捐赠科研通 3259135
什么是DOI,文献DOI怎么找? 1799535
邀请新用户注册赠送积分活动 878412
科研通“疑难数据库(出版商)”最低求助积分说明 806888