Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet

干涉合成孔径雷达 相位展开 对偶(语法数字) 相(物质) 遥感 地质学 大地测量学 计算机科学 合成孔径雷达 光学 干涉测量 物理 艺术 文学类 量子力学
作者
Xiaomao Chen,Shanshan Zhang,Xiaofeng Qin,Jinfeng Lin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (6): 1058-1058
标识
DOI:10.3390/rs16061058
摘要

Two-dimensional phase unwrapping (2-D PU) is vital for reconstructing Earth’s surface topography and displacement from interferometric synthetic aperture radar (InSAR) data. Conventional algorithms rely on the postulate, but this assumption is often insufficient due to abrupt topographic changes and severe noise. To address this challenge, our research proposes a novel approach utilizing deep convolutional neural networks inspired by the U-Net architecture to estimate phase gradient information. Our approach involves downsampling the input data to extract crucial features, followed by upsampling to restore spatial resolution. We incorporate two attention mechanisms—feature pyramid attention (FPA) and global attention upsample (GAU)—and a residual structure in the network’s structure. Thus, we construct ResDANet (residual and dual attention net). We rigorously train ResDANet utilizing simulated datasets and employ an L1-norm objective function to minimize the disparity between unwrapped phase gradients and those calculated by ResDANet, yielding the final 2-D PU results. The network is rigorously trained using two distinct training strategies and encompassing three types of simulated datasets. ResDANet exhibits excellent robust performance and efficiency on simulated data and real data, such as China’s Three Gorges and an Italian volcano.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
顺毛大帝应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
David应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
David应助科研通管家采纳,获得10
2秒前
2秒前
刻苦的三德完成签到,获得积分20
3秒前
樱桃梦发布了新的文献求助10
5秒前
Serendipity完成签到,获得积分10
7秒前
7秒前
淡定从凝完成签到,获得积分10
8秒前
13秒前
樱桃梦完成签到,获得积分20
13秒前
该房地产个人的完成签到,获得积分10
14秒前
kk完成签到 ,获得积分10
15秒前
充电宝应助坚强的金鱼采纳,获得20
18秒前
Jimmy_King发布了新的文献求助30
18秒前
tctgvfxdbhb完成签到,获得积分10
19秒前
现代的紫霜完成签到,获得积分10
20秒前
20秒前
J985523发布了新的文献求助30
21秒前
852应助赵凯采纳,获得10
24秒前
凯凯完成签到 ,获得积分10
25秒前
甜甜发布了新的文献求助10
27秒前
和谐亦瑶完成签到,获得积分10
28秒前
shi0331完成签到,获得积分10
30秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843872
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544405
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711369
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774416