MOSAIC: A Multi-Granularity Cross-Modal Framework for Predicting Synergistic Drug Combinations in Personalized Healthcare

粒度 马赛克 计算机科学 医疗保健 个性化医疗 情态动词 药品 计算生物学 数据挖掘 医学 生物信息学 药理学 化学 生物 历史 经济增长 操作系统 经济 考古 高分子化学
作者
Licai Zhang,Xiao Kang,Xinxing Yang,Lin Wang,Genke Yang,Jian Chu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3605313
摘要

The personalization of cancer treatment through drug combinations is critical for improving healthcare outcomes, increasing effectiveness, and reducing side effects. Computational methods have become increasingly important to prioritize synergistic drug pairs because of the vast search space of possible chemicals. However, existing approaches typically rely solely on global molecular structures, neglecting information exchange between different modality representations and interactions between molecular and fine-grained fragments, leading to limited understanding of drug synergy mechanisms for personalized treatment. To address these limitations, we propose MOSAIC (Multi-granularity crOSs-modAl method for synergIstic drug combinations prediCtion), an AI-driven multi-granularity cross-modal method for personalized synergistic drug combination prediction that considers both molecular and fragment-level features. MOSAIC employs a dual-layer representation system, decomposing molecules into chemically meaningful fragments using the BRICS algorithm, facilitating information exchange between graph and SMILES representations through a bidirectional cross-attention mechanism, and ensuring semantic consistency of different modal representations of the same molecular fragment through a contrastive learning framework. Additionally, we designed a bilinear attention network to capture interactions between fragments of different drugs and dynamically integrate multi-granularity feature relationships through a multi-head attention mechanism. Through extensive experiments on multiple real-world datasets, MOSAIC demonstrates superior performance over state-of-the-art methods. Literature validation confirms its predicted novel drug combinations align with existing clinical evidence, while visualization analyses elucidate its capability to pinpoint key molecular fragments critical for drug synergy, providing valuable insights for personalized treatment planning and remote patient monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孤独的匕发布了新的文献求助10
刚刚
香蕉觅云应助Emily采纳,获得10
1秒前
共享精神应助lyl1995采纳,获得10
2秒前
2秒前
梁子完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
fcyyc发布了新的文献求助10
3秒前
TiAmo完成签到 ,获得积分10
4秒前
DaXin完成签到,获得积分10
4秒前
阳光的正豪完成签到,获得积分10
5秒前
5秒前
科研潜水完成签到 ,获得积分10
5秒前
彭于晏应助满意紫丝采纳,获得10
6秒前
共享精神应助语恒采纳,获得10
6秒前
6秒前
6秒前
Benjamin完成签到 ,获得积分0
6秒前
学fei了吗完成签到,获得积分10
6秒前
zhangyu完成签到,获得积分10
7秒前
7秒前
8秒前
张兴博完成签到,获得积分10
8秒前
oscar发布了新的文献求助10
8秒前
KEKE完成签到,获得积分10
8秒前
Kevin发布了新的文献求助10
8秒前
gggghhhh完成签到 ,获得积分10
9秒前
城南花已开完成签到,获得积分10
9秒前
苗条的钻石完成签到,获得积分10
10秒前
11秒前
唄肯妮完成签到,获得积分10
11秒前
song发布了新的文献求助10
11秒前
11秒前
akanenn999发布了新的文献求助10
12秒前
wgl200212完成签到,获得积分10
12秒前
WYJ完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
lxw发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765363
求助须知:如何正确求助?哪些是违规求助? 5560745
关于积分的说明 15408637
捐赠科研通 4900116
什么是DOI,文献DOI怎么找? 2636197
邀请新用户注册赠送积分活动 1584411
关于科研通互助平台的介绍 1539665