Alzheimer's disease classification using mutual information generated graph convolutional network for functional MRI

连接体 计算机科学 图形 相关性 相互信息 模式识别(心理学) 人工智能 熵(时间箭头) 卷积神经网络 人类连接体项目 神经科学 功能连接 心理学 数学 理论计算机科学 物理 量子力学 几何学
作者
Yinghua Fu,Jiang Li,John A. Detre,Ze Wang
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
标识
DOI:10.1177/13872877251350306
摘要

Background High-order cognitive functions depend on collaborative actions and information exchange between multiple brain regions. These inter-regional interactions can be characterized by mutual information (MI). Alzheimer's disease (AD) is known to affect many high-order cognitive functions, suggesting an alteration to inter-regional MI, which remains unstudied. Objective To examine whether inter-regional MI can effectively distinguish different stages of AD from normal control (NC) through a connectome-based graph convolutional network (GCN). Methods MI was calculated between the mean time series of each pair of brain regions, forming the connectome which was input to a multi-level connectome based GCN (MLC-GCN) to predict the different stages of AD and NC. The spatio-temporal feature extraction in MLC-GCN was used to capture multi-level functional connectivity patterns generating connectomes. The GCN predictor learns and optimizes graph representations at each level, concatenating the representations for final classification. We validated our model on 552 subjects from ADNI and OASIS3. The MI-based model was compared to models with several different connectomes defined by Kullback-Leibler divergence, cross-entropy, cross-sample entropy, and correlation coefficient. Model performance was evaluated using 5-fold cross-validation. Results The MI-based connectome achieved the highest prediction performance for both ADNI2 and OASIS3 where it's accuracy/Area Under the Curve/F1 were 87.72%/0.96/0.88 and 84.11%/0.96/0.91 respectively. Model visualization revealed that prominent MI features located in temporal, prefrontal, and parietal cortices. Conclusions MI-based connectomes can reliably differentiate NC, mild cognitive impairment and AD. Compared to other four measures, MI demonstrated the best performance. The model should be further tested with other independent datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boryant24发布了新的文献求助50
刚刚
zhuangzhuang发布了新的文献求助10
1秒前
ltz关闭了ltz文献求助
1秒前
3秒前
always完成签到,获得积分10
3秒前
CodeCraft应助赵小胖采纳,获得10
4秒前
5秒前
一叶完成签到 ,获得积分10
5秒前
大福发布了新的文献求助10
6秒前
6秒前
8秒前
多乐完成签到,获得积分10
9秒前
射鵰不慎闪腰完成签到,获得积分10
9秒前
领导范儿应助TaoJ采纳,获得10
10秒前
小强2218完成签到,获得积分10
10秒前
NexusExplorer应助轻松招牌采纳,获得10
12秒前
欢城发布了新的文献求助20
12秒前
13秒前
xmy发布了新的文献求助10
17秒前
CipherSage应助dududuudu采纳,获得10
17秒前
18秒前
共享精神应助zhuangzhuang采纳,获得10
20秒前
beichuanheqi完成签到,获得积分10
21秒前
研友_8yN60L发布了新的文献求助10
22秒前
ltz发布了新的文献求助30
28秒前
30秒前
三清小爷完成签到,获得积分10
32秒前
轻松招牌完成签到,获得积分20
32秒前
小鱼完成签到,获得积分10
34秒前
dududuudu发布了新的文献求助10
34秒前
36秒前
FashionBoy应助科研通管家采纳,获得30
37秒前
顾矜应助科研通管家采纳,获得10
37秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
38秒前
慕青应助科研通管家采纳,获得10
38秒前
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085032
求助须知:如何正确求助?哪些是违规求助? 3624130
关于积分的说明 11496180
捐赠科研通 3338317
什么是DOI,文献DOI怎么找? 1835202
邀请新用户注册赠送积分活动 903746
科研通“疑难数据库(出版商)”最低求助积分说明 821956