Trajectories and Predictors of Depression After Breast Cancer Diagnosis: A 1-year longitudinal study

乳腺癌 萧条(经济学) 纵向研究 临床心理学 医学 肿瘤科 癌症 内科学 病理 宏观经济学 经济
作者
Eugenia Mylona,Κωνσταντίνα Κούρου,Georgios C. Manikis,Haridimos Kondylakis,Kostas Marias,Evangelos C. Karademas,Paula Poikonen‐Saksela,Ketti Mazzocco,Chiara Marzorati,Ruth Pat‐Horenczyk,Ilan Roziner,Berta Sousa,Albino J. Oliveira‐Maia,Panagiotis G. Simos,Dimitrios I. Fotiadis
标识
DOI:10.1109/embc48229.2022.9871647
摘要

Being diagnosed with breast cancer (BC) can be a traumatic experience for patients who may experience symptoms of depression. In order to facilitate the prevention of such symptoms, it is crucial to understand how and why depressive symptoms emerge and evolve for each individual, from diagnosis through treatment and recovery. In the present work, data from a multicentric study of 706 BC patients followed for 12 months are analyzed. First, a trajectory-based unsupervised clustering based on K-means is performed to capture the dynamic patterns of change in patients' depressive symptoms after BC diagnosis and to identify distinct trajectory clusters. Then a supervised learning approach was employed to build a classification model of depression progression and to identify potential predictors. Patients were clustered into 4 groups: stable low, stable high, improving, and worsening depressive symptoms. In a nested cross-validation pipeline, the performance of the Support Vector Machine model for discriminating between "good" and "poor" progression was 0.78±0.05 in terms of AUC. Several psychological variables emerged as highly predictive of the evolution of depressive symptoms with the most important ones being negative affectivity and anxious preoccupation. Clinical Relevance—The findings of the present study may help clinicians tailor individualized psychological interventions aiming at alleviating the burden of these symptoms in women with breast cancer and improving their overall well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
bkagyin应助乙二胺四乙酸采纳,获得10
4秒前
Belinda发布了新的文献求助10
5秒前
赘婿应助雪雪子哇采纳,获得10
6秒前
6秒前
7秒前
7秒前
茶荼发布了新的文献求助10
9秒前
10秒前
mia发布了新的文献求助10
12秒前
msli发布了新的文献求助10
13秒前
Orange应助茶荼采纳,获得10
13秒前
H..完成签到,获得积分20
14秒前
善学以致用应助zy采纳,获得10
16秒前
Jieh完成签到,获得积分10
16秒前
zizi完成签到,获得积分20
17秒前
18秒前
18秒前
Jasper应助zizi采纳,获得10
22秒前
刘佳发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
茶荼完成签到,获得积分10
30秒前
30秒前
木木三发布了新的文献求助10
31秒前
开朗的钻石完成签到,获得积分10
32秒前
粱老黑发布了新的文献求助10
32秒前
33秒前
34秒前
所所应助科研通管家采纳,获得10
34秒前
Micro_A应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
Orange应助科研通管家采纳,获得10
35秒前
小二郎应助科研通管家采纳,获得10
35秒前
一一应助科研通管家采纳,获得10
35秒前
35秒前
星辰大海应助科研通管家采纳,获得10
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
Lucas应助科研通管家采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976