Unsupervised Feature Selection for High-Order Embedding Learning and Sparse Learning

计算机科学 无监督学习 特征选择 人工智能 嵌入 特征学习 机器学习 特征(语言学) 选择(遗传算法) 模式识别(心理学) 哲学 语言学
作者
Zebiao Hu,Jian Wang,Jacek Mańdziuk,Z. Y. Ren,Nikhil R. Pal
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2025.3546658
摘要

The majority of the unsupervised feature selection methods usually explore the first-order similarity of the data while ignoring the high-order similarity of the instances, which makes it easy to construct a suboptimal similarity graph. Furthermore, such methods, often are not suitable for performing feature selection due to their high complexity, especially when the dimensionality of the data is high. To address the above issues, a novel method, termed as unsupervised feature selection for high-order embedding learning and sparse learning (UFSHS), is proposed to select useful features. More concretely, UFSHS first takes advantage of the high-order similarity of the original input to construct an optimal similarity graph that accurately reveals the essential geometric structure of high-dimensional data. Furthermore, it constructs a unified framework, integrating high-order embedding learning and sparse learning, to learn an appropriate projection matrix with row sparsity, which helps to select an optimal subset of features. Moreover, we design a novel alternative optimization method that provides different optimization strategies according to the relationship between the number of instances and the dimensionality, respectively, which significantly reduces the computational complexity of the model. Even more amazingly, the proposed optimization strategy is shown to be applicable to ridge regression, broad learning systems and fuzzy systems. Extensive experiments are conducted on nine public datasets to illustrate the superiority and efficiency of our UFSHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
朴素的啤酒完成签到,获得积分10
1秒前
钰天心完成签到,获得积分10
2秒前
2秒前
yoyo发布了新的文献求助10
2秒前
3秒前
SYQ发布了新的文献求助10
4秒前
5秒前
科研通AI5应助大方研究生采纳,获得10
5秒前
芷莯发布了新的文献求助10
5秒前
5秒前
雍以菱完成签到,获得积分10
6秒前
7秒前
动听靖发布了新的文献求助10
7秒前
2024dsb完成签到 ,获得积分10
7秒前
7秒前
乐乐应助科研小民工采纳,获得100
8秒前
8秒前
藜誌完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
17858925711关注了科研通微信公众号
9秒前
酷波er应助yoyo采纳,获得10
9秒前
高高访文完成签到,获得积分10
10秒前
科研通AI5应助欣欣杨采纳,获得10
10秒前
Sun发布了新的文献求助10
11秒前
希望天下0贩的0应助jeronimo采纳,获得10
11秒前
xy发布了新的文献求助10
11秒前
SciGPT应助weizhao采纳,获得10
11秒前
一只橙子完成签到,获得积分10
11秒前
13秒前
友好的海之完成签到,获得积分10
13秒前
wanci应助幸福广山采纳,获得10
14秒前
zhoup完成签到,获得积分10
15秒前
刘源文发布了新的文献求助10
16秒前
17秒前
闾丘惜寒完成签到,获得积分10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828