清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Foundation Model for Predicting Prognosis and Adjuvant Therapy Benefit From Digital Pathology in GI Cancers

医学 内科学 肿瘤科 组织病理学 癌症 辅助治疗 一致性 结直肠癌 阶段(地层学) 预后变量 病理 生物 古生物学
作者
Xiyue Wang,Yuming Jiang,Sen Yang,Fang Wang,Xiao Ming Zhang,Wei Wang,Yijiang Chen,Xiaoyan Wu,Jinxi Xiang,Yuchen Li,Xiaofeng Jiang,Wei Yuan,Jing Zhang,Kun‐Hsing Yu,Robyn L. Ward,Nicholas J. Hawkins,Jitendra Jonnagaddala,Guoxin Li,Ruijiang Li
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1200/jco-24-01501
摘要

PURPOSE Artificial intelligence (AI) holds significant promise for improving cancer diagnosis and treatment. Here, we present a foundation AI model for prognosis prediction on the basis of standard hematoxylin and eosin–stained histopathology slides. METHODS In this multinational cohort study, we developed AI models to predict prognosis from histopathology images of patients with GI cancers. First, we trained a foundation model using over 130 million patches from 104,876 whole-slide images on the basis of self-supervised learning. Second, we fine-tuned deep learning models for predicting survival outcomes and validated them across seven cohorts, including 1,619 patients with gastric and esophageal cancers and 2,594 patients with colorectal cancer. We further assessed the model for predicting survival benefit from adjuvant chemotherapy. RESULTS The AI models predicted disease-free survival and disease-specific survival with a concordance index of 0.726-0.797 for gastric cancer and 0.714-0.757 for colorectal cancer in the validation cohorts. The models stratified patients into high-risk and low-risk groups, with 5-year survival rates of 49%-52% versus 76%-92% in gastric cancer and 43%-72% versus 81%-98% in colorectal cancer. In multivariable analysis, the AI risk scores remained an independent prognostic factor after adjusting for clinicopathologic variables. Compared with stage alone, an integrated model consisting of stage and image information improved prognosis prediction across all validation cohorts. Finally, adjuvant chemotherapy was associated with improved survival in the high-risk group but not in the low-risk group (treatment-model interaction P = .01 and .006) for stage II/III gastric and colorectal cancer, respectively. CONCLUSION The pathology foundation model can accurately predict survival outcomes and complement clinicopathologic factors in GI cancers. Pending prospective validation, it may be used to improve risk stratification and inform personalized adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
43秒前
量子星尘发布了新的文献求助10
47秒前
画龙点睛完成签到 ,获得积分10
50秒前
1分钟前
龚文亮完成签到,获得积分10
1分钟前
sduweiyu完成签到 ,获得积分10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
路路完成签到 ,获得积分10
2分钟前
我行完成签到 ,获得积分10
2分钟前
荣浩宇完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
柯伊达完成签到 ,获得积分10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
Omni驳回了852应助
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
英姑应助欣喜若灵采纳,获得10
4分钟前
GB完成签到 ,获得积分10
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
4分钟前
欣喜若灵发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hello87完成签到,获得积分10
4分钟前
爆米花应助Yun yun采纳,获得10
4分钟前
4分钟前
吴晓峰发布了新的文献求助10
4分钟前
5分钟前
DrS完成签到,获得积分10
5分钟前
Zhusy完成签到 ,获得积分10
5分钟前
Agoni完成签到,获得积分10
5分钟前
Grace完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
我是笨蛋完成签到 ,获得积分10
5分钟前
哇哈哈哈哈哈完成签到 ,获得积分10
5分钟前
牛黄完成签到 ,获得积分10
5分钟前
小蘑菇应助王一格采纳,获得10
6分钟前
6分钟前
Yun yun发布了新的文献求助10
6分钟前
大模型应助Yun yun采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280488
求助须知:如何正确求助?哪些是违规求助? 3808446
关于积分的说明 11929404
捐赠科研通 3455788
什么是DOI,文献DOI怎么找? 1895189
邀请新用户注册赠送积分活动 944489
科研通“疑难数据库(出版商)”最低求助积分说明 848291