Foundation Model for Predicting Prognosis and Adjuvant Therapy Benefit From Digital Pathology in GI Cancers

医学 内科学 肿瘤科 组织病理学 癌症 辅助治疗 一致性 结直肠癌 阶段(地层学) 预后变量 病理 古生物学 生物
作者
Xiyue Wang,Yuming Jiang,Sen Yang,Fang Wang,Xiao Ming Zhang,Wei Wang,Yijiang Chen,Xiaoyan Wu,Jinxi Xiang,Yuchen Li,Xiaofeng Jiang,Wei Yuan,Jing Zhang,Kun‐Hsing Yu,Robyn L. Ward,Nicholas J. Hawkins,Jitendra Jonnagaddala,Guoxin Li,Ruijiang Li
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
标识
DOI:10.1200/jco-24-01501
摘要

PURPOSE Artificial intelligence (AI) holds significant promise for improving cancer diagnosis and treatment. Here, we present a foundation AI model for prognosis prediction on the basis of standard hematoxylin and eosin–stained histopathology slides. METHODS In this multinational cohort study, we developed AI models to predict prognosis from histopathology images of patients with GI cancers. First, we trained a foundation model using over 130 million patches from 104,876 whole-slide images on the basis of self-supervised learning. Second, we fine-tuned deep learning models for predicting survival outcomes and validated them across seven cohorts, including 1,619 patients with gastric and esophageal cancers and 2,594 patients with colorectal cancer. We further assessed the model for predicting survival benefit from adjuvant chemotherapy. RESULTS The AI models predicted disease-free survival and disease-specific survival with a concordance index of 0.726-0.797 for gastric cancer and 0.714-0.757 for colorectal cancer in the validation cohorts. The models stratified patients into high-risk and low-risk groups, with 5-year survival rates of 49%-52% versus 76%-92% in gastric cancer and 43%-72% versus 81%-98% in colorectal cancer. In multivariable analysis, the AI risk scores remained an independent prognostic factor after adjusting for clinicopathologic variables. Compared with stage alone, an integrated model consisting of stage and image information improved prognosis prediction across all validation cohorts. Finally, adjuvant chemotherapy was associated with improved survival in the high-risk group but not in the low-risk group (treatment-model interaction P = .01 and .006) for stage II/III gastric and colorectal cancer, respectively. CONCLUSION The pathology foundation model can accurately predict survival outcomes and complement clinicopathologic factors in GI cancers. Pending prospective validation, it may be used to improve risk stratification and inform personalized adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xx完成签到,获得积分10
1秒前
nine2652发布了新的文献求助10
1秒前
hakunamatata完成签到,获得积分10
2秒前
害怕的身影完成签到,获得积分10
4秒前
CodeCraft应助比大家采纳,获得10
5秒前
星星完成签到 ,获得积分10
6秒前
7秒前
姜且完成签到 ,获得积分10
8秒前
任晴完成签到,获得积分10
8秒前
13秒前
友好听荷发布了新的文献求助20
13秒前
Acid完成签到 ,获得积分10
15秒前
heavenhorse应助十九采纳,获得30
16秒前
z11完成签到,获得积分10
16秒前
ding应助执执采纳,获得10
17秒前
18秒前
矢思然发布了新的文献求助10
19秒前
科研通AI5应助meimei采纳,获得10
21秒前
22秒前
动漫大师发布了新的文献求助10
22秒前
24秒前
思源应助矢思然采纳,获得10
25秒前
雨石发布了新的文献求助10
27秒前
华仔应助执执采纳,获得10
28秒前
比大家发布了新的文献求助10
29秒前
30秒前
32秒前
香蕉觅云应助lllla采纳,获得10
33秒前
跳跃的邪欢完成签到,获得积分10
34秒前
meimei发布了新的文献求助10
35秒前
苏靖完成签到,获得积分10
37秒前
执执发布了新的文献求助10
37秒前
矢思然发布了新的文献求助10
38秒前
40秒前
852应助矢思然采纳,获得10
42秒前
Kyone完成签到,获得积分10
46秒前
lllla发布了新的文献求助10
47秒前
友好听荷完成签到,获得积分10
48秒前
51秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878