Active Learning FEP: Impact on Performance of AL Protocol and Chemical Diversity

多样性(政治) 协议(科学) 计算机科学 数据科学 化学 医学 政治学 替代医学 病理 法学
作者
Richard Lonsdale,Jack Glancy,Leen Kalash,David Marcus,Ian D. Wall
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.jctc.5c00128
摘要

Active learning using models built on binding potency predictions from free energy perturbation (AL-FEP) has been proposed as a method for generating machine learning models capable of predicting biochemical potency for early-stage lead optimization where limited measured data are available. Two applications of AL-FEP are described here for different bromodomain inhibitor series that were developed in historic GSK projects: one where the core is kept constant and the other where core changes are included in the pool of compound ideas. Measured biochemical potency data have been used to assess the performance of the final models and demonstrate that well-performing models can be generated within several rounds of active learning, especially when the core is kept constant. To apply this method routinely to drug discovery projects, a retrospective evaluation of the AL-FEP workflow has been conducted covering parameters including the compound selection strategy, explore-exploit ratios, and number of compounds selected per cycle. Significant differences in performance in terms of model enrichment and R2 are observed and rationalized. Recommendations are made as to when specific parameters should be employed for AL-FEP depending on the context (maximizing potency or broad-range prediction accuracy) in which the final model is to be deployed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZCrazy完成签到,获得积分10
刚刚
早日毕业完成签到,获得积分10
刚刚
打打应助111采纳,获得10
刚刚
合适怜南完成签到,获得积分10
1秒前
予初完成签到,获得积分20
1秒前
棍棍来也完成签到,获得积分10
1秒前
oooo完成签到,获得积分10
1秒前
yanxiaoting完成签到,获得积分10
1秒前
胡图图完成签到,获得积分0
1秒前
2秒前
2秒前
2秒前
ju龙哥完成签到,获得积分10
2秒前
2秒前
黑森林完成签到,获得积分10
3秒前
Jasper应助GOUGOU2022采纳,获得10
3秒前
ZSmile完成签到,获得积分10
4秒前
4秒前
wangqinlei完成签到 ,获得积分10
4秒前
李爱国应助文文采纳,获得10
4秒前
清风完成签到,获得积分10
4秒前
体贴的如之完成签到,获得积分10
5秒前
123完成签到 ,获得积分10
6秒前
7秒前
HAN完成签到,获得积分10
7秒前
xdwaev完成签到,获得积分10
7秒前
liaoyoujiao完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI6应助健忘的寄瑶采纳,获得10
8秒前
十一发布了新的文献求助10
8秒前
所所应助橘子味采纳,获得10
8秒前
结实青文完成签到 ,获得积分10
8秒前
Vincent发布了新的文献求助10
8秒前
科研dog完成签到,获得积分10
9秒前
小晨晨啦发布了新的文献求助10
9秒前
H与K完成签到,获得积分10
9秒前
飞飞完成签到 ,获得积分10
10秒前
shilong.yang发布了新的文献求助10
10秒前
天地一体完成签到,获得积分10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167