亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating L2 learners’ text-to-video resemiotisation in AI-enhanced digital multimodal composing

计算机科学 多媒体 数字视频 语言学 自然语言处理 交互式视频 多模态 人工智能 万维网 帧(网络) 电信 哲学
作者
Danling Li,Sichen Xia,Kai Guo
出处
期刊:Computer Assisted Language Learning [Routledge]
卷期号:: 1-32
标识
DOI:10.1080/09588221.2025.2481402
摘要

Digital multimodal composing (DMC) has garnered attention in second language (L2) writing classrooms. The introduction of artificial intelligence (AI) has been a game-changer in this field, providing tools that amplify DMC by translating text into images and videos. However, there is a research gap on how these tools are utilised by learners. This study aims to fill this gap by applying a resemiotisation perspective to examine how learners employ AI tools to integrate linguistic, semiotic, and technological elements in translating written genres into video formats. Conducted at a comprehensive university in China, this research involved 75 undergraduates in an English writing course. During the course, students used an AI-powered text-to-video platform called Pictory to convert technical proposals into videos. Pictory facilitated the students' video creation by enabling them to craft search queries to generate video clips. Data sources included students' technical proposal outlines, video composition plans, reflections on the text-to-video generation process, and the produced video compositions. Through a content analysis of students' reasons for revising search queries during their text-to-video conversion processes as well as a comparative analysis of their original and revised search texts alongside the multimodal elements within the resulting videos, the study revealed that text-to-video resemiotisation in AI-enhanced DMC involved students modifying written texts (transformation) and the AI technology converting them into videos (transduction), diverging from traditional DMC where both the transformation and transduction stages are overseen by human agents. Specifically, during the text-to-video resemiotisation processes, students implemented various customisation initiatives targeting search credibility, scope, relevance, and modality to generate suitable video clips. This study enriches our understanding of DMC in AI-enhanced learning contexts, providing insights for future DMC curriculum development that effectively leverages AI tools to improve learners' DMC skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水若琳完成签到 ,获得积分10
8秒前
9秒前
明明发布了新的文献求助10
14秒前
明明完成签到,获得积分10
19秒前
41秒前
科研通AI2S应助pai先生采纳,获得10
42秒前
Akim应助刘悦采纳,获得10
43秒前
CodeCraft应助推拿一阳指采纳,获得10
50秒前
Owen应助lll采纳,获得10
58秒前
英姑应助小羊羊采纳,获得10
1分钟前
1分钟前
小羊羊发布了新的文献求助10
1分钟前
学术菜鸡123完成签到,获得积分10
1分钟前
天天天才完成签到,获得积分10
1分钟前
1分钟前
小羊羊发布了新的文献求助10
1分钟前
在水一方应助naitangkeke采纳,获得10
1分钟前
qpp完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
naitangkeke发布了新的文献求助10
2分钟前
pai先生发布了新的文献求助10
2分钟前
2分钟前
2分钟前
思源应助naitangkeke采纳,获得10
2分钟前
pai先生完成签到,获得积分10
2分钟前
nn666发布了新的文献求助10
2分钟前
Tuesday完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
刘悦发布了新的文献求助10
2分钟前
奥丁蒂法完成签到,获得积分10
2分钟前
英俊的铭应助Yaoz采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
23应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091485
求助须知:如何正确求助?哪些是违规求助? 3630295
关于积分的说明 11507543
捐赠科研通 3341825
什么是DOI,文献DOI怎么找? 1836917
邀请新用户注册赠送积分活动 904792
科研通“疑难数据库(出版商)”最低求助积分说明 822544