Semi-supervised denoising autoencoder with multiple consistency regularization for process fault classification

自编码 正规化(语言学) 人工智能 模式识别(心理学) 一致性(知识库) 计算机科学 降噪 过程(计算) 机器学习 人工神经网络 操作系统
作者
Xiaoping Guo,Qingyu Guo,Yuan Li
出处
期刊:Engineering research express [IOP Publishing]
卷期号:7 (3): 035402-035402
标识
DOI:10.1088/2631-8695/addd5f
摘要

Abstract Process fault classification constitutes a critical component for ensuring efficient and stable industrial operations. If the collected process data is severely affected by noise or contains a lot of information unrelated to the fault, it will affect the performance of the classification model. To address these issues, this paper proposes a semi-supervised denoising autoencoder method with multi-consistency regularization (MCR-SSDAE). Based on the supervised autoencoder, this paper proposes to add unlabeled inputs and incorporate three intensities of interference into both labeled and unlabeled inputs to overcome the influence of noise on process data and improve the robustness of the model. Labeled data are used for pre-training the model to reduce the impact of irrelevant information. The pseudo-labels of unlabeled data are predicted by using the pre-trained model, and their validity is judged by setting a threshold. The training data is expanded and used for model adjustment to solve the problem of insufficient labeled data and achieve semi-supervised training of the model. In the adjustment process, the pseudo-label consistency and feature consistency under triple interference are proposed to construct a multiple consistency regularization loss function, which can effectively use the information of unlabeled data to improve the prediction ability of the model. The effectiveness of the proposed method is verified in the Tennessee-Eastman (TE) process and the three-phase flow process. The experimental results show that this method can achieve good results with a small amount of labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kexian_ning发布了新的文献求助10
1秒前
下小雨完成签到 ,获得积分10
1秒前
橙子雨发布了新的文献求助10
3秒前
RAB发布了新的文献求助10
4秒前
朱芷萱发布了新的文献求助10
4秒前
曹原阁发布了新的文献求助10
4秒前
离开土豆发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
桃博发布了新的文献求助10
7秒前
YaRu应助甜面酱采纳,获得10
7秒前
漏漏漏完成签到,获得积分10
8秒前
研友_VZG7GZ应助大咸鱼采纳,获得10
10秒前
椰子发布了新的文献求助10
10秒前
闪闪沂发布了新的文献求助10
10秒前
十四洲完成签到,获得积分10
11秒前
李健应助xll采纳,获得10
12秒前
12秒前
钛影完成签到,获得积分10
13秒前
13秒前
14秒前
兴奋晋鹏完成签到,获得积分10
14秒前
无花果应助O_o采纳,获得10
15秒前
15秒前
CipherSage应助luoliping采纳,获得10
16秒前
秋云山月发布了新的文献求助10
16秒前
科研通AI6应助luoliping采纳,获得10
16秒前
Nov_snowr发布了新的文献求助10
16秒前
曹原阁完成签到,获得积分10
17秒前
江南之南完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
丘比特应助JING采纳,获得10
19秒前
龙龙发布了新的文献求助10
19秒前
20秒前
20秒前
Akim应助搞学术的成功女人采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329