Model development and validation for predicting small-cell lung cancer bone metastasis utilizing diverse machine learning algorithms based on the SEER database

医学 机器学习 算法 随机森林 接收机工作特性 骨转移 转移 阿达布思 人工智能 决策树 布里氏评分 支持向量机 肿瘤科 脑转移 逻辑回归 递归分区 内科学 癌症 计算机科学
作者
Shuai Qie,Xinming Zhang,Jiusong Luan,Zhengbo Song,Jingyun Li,Jingyu Wang
出处
期刊:Medicine [Wolters Kluwer]
卷期号:104 (12): e41987-e41987
标识
DOI:10.1097/md.0000000000041987
摘要

The aim of this study was to devise a machine learning algorithm with superior performance in predicting bone metastasis (BM) in small cell lung cancer (SCLC) and create a straightforward web-based predictor based on the developed algorithm. Data comprising demographic and clinicopathological characteristics of patients with SCLC and their potential BM were extracted from the Surveillance, Epidemiology, and End Results database between 2010 and 2018. This data was then utilized to develop 12 machine learning algorithm models: support vector machine, logistic regression, NaiveBayes, extreme gradient boosting, decision tree, random forest, ExtraTrees, LightGBM, GradientBoosting, AdaBoost, MLP, and k-nearest neighbor. The models were compared and evaluated using various metrics, including accuracy, precision, recall rate, F1-score, the area under the receiver operating characteristic curve (AUC) value, and the Brier score. The objective was to predict the likelihood of BM in SCLC patients based on their demographic and clinicopathological features. The best-performing model was then chosen, and the associations between the clinicopathological characteristics and the target variable (presence or absence of BM) were interpreted based on this model. This analysis aimed to provide insights into the factors that may influence the risk of BM in SCLC patients. A total of 89,366 SCLC patients were included in this study, and among them, 8269 (9.25%) patients developed BM. The age, T stage, N stage, liver metastasis, lung metastasis, marital status, income, M stage, American Joint Committee on Cancer stage, and brain metastasis were identified as independent risk factors for SCLC. Among the various predictive models evaluated, the machine learning model utilizing the XGB algorithm showed the highest performance in both internal and external data validation, achieving AUC scores of training set AUC: 0.965, validation set AUC: 0.962, and testing set AUC: 0.961. Subsequently, the XGB algorithm was utilized to develop a web-based predictor for BM in patients with SCLC. This study has developed a web-based predictor utilizing the XGB algorithm to forecast the risk of BM in SCLC patients, aiming to provide doctors with valuable assistance in clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Boo完成签到,获得积分10
刚刚
1秒前
AN发布了新的文献求助10
3秒前
3秒前
3秒前
李雯发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
赘婿应助melody采纳,获得30
6秒前
鲜艳的远航完成签到,获得积分10
7秒前
脑洞疼应助111采纳,获得10
7秒前
7秒前
7秒前
dm完成签到,获得积分10
7秒前
冰魂应助HC采纳,获得20
7秒前
承乐发布了新的文献求助10
8秒前
8秒前
ddd完成签到,获得积分10
8秒前
jl完成签到 ,获得积分10
9秒前
kaka完成签到 ,获得积分20
9秒前
iuhgnor完成签到,获得积分10
9秒前
好的老师发布了新的文献求助10
10秒前
sober123完成签到,获得积分20
11秒前
suxin发布了新的文献求助10
11秒前
走廊邓发布了新的文献求助200
12秒前
研友_VZG7GZ应助星辉的斑斓采纳,获得10
12秒前
高兴微笑完成签到,获得积分10
12秒前
梧桐完成签到,获得积分10
12秒前
叶绿体机智完成签到,获得积分10
12秒前
13秒前
李健应助显隐采纳,获得10
13秒前
桃子发布了新的文献求助10
13秒前
14秒前
14秒前
慈祥的丹寒完成签到 ,获得积分10
17秒前
hxl发布了新的文献求助10
18秒前
18秒前
路宝发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869115
求助须知:如何正确求助?哪些是违规求助? 3411343
关于积分的说明 10673233
捐赠科研通 3135611
什么是DOI,文献DOI怎么找? 1729789
邀请新用户注册赠送积分活动 833475
科研通“疑难数据库(出版商)”最低求助积分说明 780798