A machine learning model for robust prediction of sepsis-induced coagulopathy in critically ill patients with sepsis

败血症 医学 凝血病 重症监护室 队列 重症监护医学 回顾性队列研究 机器学习 急诊医学 内科学 计算机科学
作者
Jia Sun,Lixin Zhang,Zhaotang Gong,Hongling Ma,Dan Wu,Ruo-Xi Wu,Guleng Siri
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fcimb.2025.1579558
摘要

Introduction Sepsis-induced coagulopathy (SIC) is a common disease in patients with sepsis. It denotes higher mortality rates and a poorer prognosis in these patients. This study aimed to develop a practical machine learning (ML) model for the prediction of the risk of SIC in critically ill patients with sepsis. Methods In this retrospective cohort study, patients were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and the Inner Mongolia Autonomous Region People’s Hospital database. Sepsis and SIC were defined based on the Sepsis-3 criteria and the criteria developed based on the International Society of Thrombosis and Haemostasis (ISTH), respectively. We compared nine ML models using the Sequential Organ Failure Assessment (SOFA) score in terms of SIC prediction ability. Optimal model selection was based on the superior performance metrics exhibited by the model on the training dataset, the internal validation dataset, and the external validation dataset. Results Of the 15,479 patients in MIMIC-IV included in the final cohort, a total of 6,036 (38.9%) patients developed SIC during sepsis. We selected 17 features to construct ML prediction models. The gradient boosting machine (GBM) model was deemed optimal as it achieved high predictive accuracy and reliability across the training, internal, and external validation datasets. The areas under the curve of the GBM model were 0.773 (95%CI = 0.765–0.782) in the training dataset, 0.730 (95%CI = 0.715–0.745) in the internal validation dataset, and 0.966 (95%CI = 0.938–0.994) in the external validation dataset. The Shapley Additive Explanations (SHAP) values illustrated the prediction results, indicating that total bilirubin, red cell distribution width (RDW), systolic blood pressure (SBP), heparin, and blood urea nitrogen (BUN) were risk factors for progression to SIC in patients with sepsis. Conclusions We developed an optimal and operable ML model that was able to predict the risk of SIC in septic patients better than the SOFA scoring models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rzzzz发布了新的文献求助10
1秒前
研友_VZG7GZ应助interventiongod采纳,获得10
2秒前
2秒前
2秒前
3秒前
MMZ完成签到 ,获得积分10
5秒前
qianlan发布了新的文献求助10
5秒前
yemeiyu完成签到,获得积分10
6秒前
凶狠的谷蓝完成签到,获得积分10
6秒前
rzzzz完成签到,获得积分20
6秒前
Future发布了新的文献求助10
6秒前
Yue发布了新的文献求助10
7秒前
科研小桶发布了新的文献求助10
8秒前
18°N天水色完成签到,获得积分10
9秒前
9秒前
zpy完成签到,获得积分10
10秒前
dddd完成签到,获得积分10
10秒前
许哲完成签到,获得积分10
11秒前
11秒前
qianlan完成签到,获得积分10
11秒前
11秒前
汉堡包应助yff采纳,获得10
12秒前
13秒前
王嘉玮发布了新的文献求助10
13秒前
浅斟低唱发布了新的文献求助10
16秒前
斯文败类应助姜姜采纳,获得10
16秒前
豌豆射手发布了新的文献求助30
18秒前
科研小桶完成签到,获得积分20
22秒前
Lisa完成签到 ,获得积分10
22秒前
bogula1112完成签到 ,获得积分10
25秒前
ysysljj应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得20
27秒前
ysysljj应助科研通管家采纳,获得30
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
小蘑菇应助聪慧的盼夏采纳,获得10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745