DNA-encoded Library Machine Learning Applications

计算机科学 计算生物学 DNA 人工智能 生物 遗传学
作者
Eric A. Sigel
出处
期刊:Royal Society of Chemistry eBooks [The Royal Society of Chemistry]
卷期号:: 17-40
标识
DOI:10.1039/9781788016032-00017
摘要

Machine learning (ML) has begun to realize its promise in many domains in the last several years. While small molecule drug discovery has lagged in comparison to other areas, developments in computing capabilities, data generation, and algorithms have enabled significant progress in molecule prediction. DNA-encoded libraries (DELs) represent an efficient way to generate the quantity of data required for effective model building, providing a mechanism for protein-target specific prediction with economics that permit individual organizations to operate. DEL-based machine learning (DEL-ML) has been demonstrated to work for a variety of targets and continues to expand in its usage in the industry and in the approaches reported. With this initial success, a number of challenges and considerations faced by the DEL-ML practitioner have been identified including denoising of DEL data, choice of ML algorithm, hyperparameters and molecule representations, and the need for relevant metrics for assessment, particularly given the high resource and time costs of testing predictions. In order to fully realize the potential of DEL-ML, key improvements in drug discovery infrastructure and broad availability of DEL data are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶冻发布了新的文献求助10
1秒前
1秒前
居北完成签到,获得积分10
2秒前
18356121207完成签到,获得积分10
2秒前
2秒前
平常雨泽发布了新的文献求助30
2秒前
阿秋完成签到,获得积分10
3秒前
暖暖完成签到,获得积分10
4秒前
tRNA发布了新的文献求助30
4秒前
4秒前
5秒前
无奈的翅膀完成签到,获得积分10
5秒前
yoyo发布了新的文献求助10
5秒前
药镜发布了新的文献求助10
5秒前
李爱国应助guooooo采纳,获得10
6秒前
英俊的铭应助小肆采纳,获得10
6秒前
6秒前
wynne313发布了新的文献求助10
7秒前
斯文败类应助chen采纳,获得10
8秒前
8秒前
9秒前
9秒前
daipeng发布了新的文献求助10
10秒前
布知道发布了新的文献求助10
11秒前
bloali完成签到,获得积分10
13秒前
冰魂应助枯叶蝶采纳,获得10
13秒前
AhhHuang应助枯叶蝶采纳,获得10
13秒前
科研通AI5应助枯叶蝶采纳,获得10
13秒前
科研通AI5应助枯叶蝶采纳,获得10
13秒前
情怀应助枯叶蝶采纳,获得10
13秒前
tRNA完成签到,获得积分10
14秒前
ephore发布了新的文献求助30
14秒前
科研通AI2S应助wynne313采纳,获得10
15秒前
蛇虫鼠蚁应助wynne313采纳,获得100
15秒前
星辰大海应助奶冻采纳,获得10
15秒前
17秒前
18秒前
眯眯眼的雪莲完成签到 ,获得积分10
18秒前
19秒前
fffan给fffan的求助进行了留言
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814731
求助须知:如何正确求助?哪些是违规求助? 3358869
关于积分的说明 10397908
捐赠科研通 3076241
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767555