Accelerating Discovery and Design of High-Performance Solid-State Electrolytes: A Machine Learning Approach

快离子导体 电解质 离子电导率 电导率 掺杂剂 材料科学 离子 离子键合 兴奋剂 纳米技术 化学物理 计算机科学 工程物理 化学 光电子学 物理 物理化学 电极 有机化学
作者
Ram Sewak,Vishnu Sudarsanan,Hemant Kumar
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
标识
DOI:10.1039/d4cp04043k
摘要

Solid-state batteries (SSBs) have the potential to fulfil the increasing global energy requirement, outperforming their liquid electrolyte counterparts. However, the progress in SSB development is hindered by the conventional approach of screening solid-state electrolytes (SSEs), which relies on human knowledge, introducing biases and requiring a time-consuming, resource-intensive trial-and-error process. As a result, a wide range of promising Li-containing structures remain unexplored. To accelerate the search for optimal SSE materials, it is crucial to understand the chemical and structural factors that govern ion transport within a crystalline lattice. We utilize logistic regression-based machine learning (ML) to identify and quantify key physio-chemical features influencing ion mobility in NASICON compounds. The dopant-related features that influence the ionic conductivity are further used to design doped SSEs for Li-ion batteries. Our innovative design approach results in NASICON electrolytes with significantly improved migration barriers and ionic conductivity, validated through density functional theory-based calculations. Specifically, this approach successfully identifies two doped SSEs with high ionic conductivity: Li2Mg0.5Ge1.5(PO4)3 and Li1.667Y0.667Ge1.333(PO4)3. Li2Mg0.5Ge1.5(PO4)3 has the lowest barrier energy of 0.261 eV, surpassing the previously best-known doped material, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), which has a migration barrier of 0.37 eV. Additionally, Li1.667Y0.667Ge1.333(PO4)3 is identified to have the second-lowest migration barrier height of 0.365 eV. By focusing the training of the machine learning model on a specific class of materials, our approach significantly reduces the time, resources, and size of the dataset required to discover novel materials with targeted properties. This methodology is readily adaptable to the design of materials in various other fields, including catalysis and structural materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔完成签到,获得积分10
刚刚
wxnice完成签到,获得积分10
1秒前
4秒前
咎青文完成签到,获得积分10
7秒前
勤奋的灯完成签到 ,获得积分10
13秒前
ZZzz完成签到 ,获得积分10
17秒前
威武谷南完成签到,获得积分10
18秒前
幸福妙柏完成签到 ,获得积分10
18秒前
个性破茧完成签到 ,获得积分10
19秒前
科科通通完成签到,获得积分10
22秒前
风中的向卉完成签到 ,获得积分10
22秒前
小丑岩完成签到,获得积分10
26秒前
27秒前
dd完成签到,获得积分10
28秒前
fatcat完成签到,获得积分10
30秒前
共享精神应助huafornol采纳,获得10
32秒前
cdercder应助钱念波采纳,获得10
33秒前
35秒前
SCI的芷蝶完成签到 ,获得积分10
39秒前
strama完成签到,获得积分10
39秒前
dldldl完成签到,获得积分10
43秒前
MQQ完成签到 ,获得积分10
48秒前
chenjiaye完成签到 ,获得积分10
49秒前
shanmao完成签到 ,获得积分10
50秒前
喜悦宫苴完成签到,获得积分10
52秒前
搜集达人应助lelele采纳,获得10
53秒前
cdercder应助科研通管家采纳,获得10
58秒前
情怀应助科研通管家采纳,获得10
58秒前
1分钟前
Manzia完成签到,获得积分10
1分钟前
Boris完成签到 ,获得积分10
1分钟前
树池完成签到,获得积分10
1分钟前
lelele完成签到,获得积分10
1分钟前
1分钟前
caibaozi完成签到,获得积分10
1分钟前
真实的采白完成签到 ,获得积分10
1分钟前
lelele发布了新的文献求助10
1分钟前
alexlpb完成签到,获得积分0
1分钟前
chenhang1894完成签到,获得积分10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859