A Contrastive Pretrain Model with Prompt Tuning for Multi-center Medication Recommendation

医学 计算机科学 中心(范畴论) 验光服务 结晶学 化学
作者
Qidong Liu,Zhaopeng Qiu,Xiangyu Zhao,Xian Wu,Zijian Zhang,Tong Xu,Feng Tian
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
标识
DOI:10.1145/3706631
摘要

Medication recommendation is one of the most critical health-related applications, which has attracted extensive research interest recently. Most existing works focus on a single hospital with abundant medical data. However, many small hospitals only have a few records, which hinders applying existing medication recommendation works to the real world. Thus, we seek to explore a more practical setting, i.e. , multi-center medication recommendation. In this setting, most hospitals have few records, but the total number of records is large. Though small hospitals may benefit from total affluent records, it is also faced with the challenge that the data distributions between various hospitals are much different. In this work, we introduce a novel con T rastive pr E train M odel with P rompt T uning ( TEMPT ) for multi-center medication recommendation, which includes two stages of pretraining and finetuning. We first design two self-supervised tasks for the pretraining stage to learn general medical knowledge. They are mask prediction and contrastive tasks, which extract the intra- and inter-relationships of input diagnosis and procedures. Furthermore, we devise a novel prompt tuning method to capture the specific information of each hospital rather than adopting the common finetuning. On the one hand, the proposed prompt tuning can better learn the heterogeneity of each hospital to fit various distributions. On the other hand, it can also relieve the catastrophic forgetting problem of finetuning. To validate the proposed model, we conduct extensive experiments on the public eICU, a multi-center medical dataset. The experimental results illustrate the effectiveness of our model. The implementation code is available to ease the reproducibility 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山落日秋月春风完成签到,获得积分10
刚刚
Catalysis123发布了新的文献求助10
刚刚
12发布了新的文献求助10
1秒前
1秒前
小高同学发布了新的文献求助10
1秒前
zpbb完成签到,获得积分10
2秒前
2秒前
如意莫英完成签到,获得积分10
2秒前
yun发布了新的文献求助10
3秒前
3秒前
明智的选择完成签到,获得积分10
3秒前
xjy完成签到,获得积分10
4秒前
liang发布了新的文献求助10
5秒前
5秒前
muzima完成签到,获得积分10
6秒前
6秒前
6秒前
晶杰发布了新的文献求助10
6秒前
7秒前
8秒前
寂寞的灵发布了新的文献求助10
8秒前
李健的小迷弟应助黄茹采纳,获得10
9秒前
彳亍发布了新的文献求助10
9秒前
Lucas应助月岛滴滴采纳,获得30
9秒前
鲤鱼盈完成签到 ,获得积分10
11秒前
11秒前
DZ发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
huzi2009发布了新的文献求助10
14秒前
Samuel发布了新的文献求助10
14秒前
斯文香彤完成签到,获得积分10
14秒前
鲤鱼盈关注了科研通微信公众号
15秒前
海纳百川完成签到,获得积分10
16秒前
公司账号2发布了新的文献求助10
16秒前
宗友绿发布了新的文献求助30
18秒前
林小乌龟发布了新的文献求助10
18秒前
JamesPei应助眼中星光采纳,获得10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929152
求助须知:如何正确求助?哪些是违规求助? 3474105
关于积分的说明 10980820
捐赠科研通 3204055
什么是DOI,文献DOI怎么找? 1770447
邀请新用户注册赠送积分活动 858482
科研通“疑难数据库(出版商)”最低求助积分说明 796651