Global Genotype by Environment Prediction Competition Reveals That Diverse Modeling Strategies Can Deliver Satisfactory Maize Yield Estimates

生物 背景(考古学) 竞赛(生物学) 人工智能 政府(语言学) 机器学习 数据科学 生态学 计算机科学 古生物学 语言学 哲学
作者
Jacob D. Washburn,José Ignacio Varela,Alencar Xavier,Qiuyue Chen,David Ertl,Joseph L. Gage,James B. Holland,Dayane Cristina Lima,M. Cinta Romay,Marco Lopez‐Cruz,Gustavo de los Campos,Wesley Barber,Cristiano Mathias Zimmer,Ignacio Trucillo Silva,Fabiani da Rocha,Renaud Rincent,Baber Ali,Haixiao Hu,Daniel E. Runcie,K. S. Gusev
出处
期刊:Genetics [Oxford University Press]
被引量:1
标识
DOI:10.1093/genetics/iyae195
摘要

Abstract Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023, the first open-to-the-public Genomes to Fields initiative Genotype by Environment prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements, and field management notes gathered by the project over 9 years. The competition attracted registrants from around the world with representation from academic, government, industry, and nonprofit institutions as well as unaffiliated. These participants came from diverse disciplines, including plant science, animal science, breeding, statistics, computational biology, and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner's strategy involved 2 models combining machine learning and traditional breeding tools: 1 model emphasized environment using features extracted by random forest, ridge regression, and least squares, and 1 focused on genetics. Other high-performing teams’ methods included quantitative genetics, machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics, weather, and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮鲁完成签到,获得积分10
1秒前
Snow完成签到,获得积分10
1秒前
科研通AI5应助虚拟的平安采纳,获得10
1秒前
1111发布了新的文献求助10
1秒前
wei发布了新的文献求助10
2秒前
香蕉觅云应助终梦采纳,获得10
2秒前
2秒前
安详的冰蝶完成签到 ,获得积分10
3秒前
Akim应助石莫言采纳,获得10
3秒前
daisy完成签到,获得积分10
4秒前
阿喵发布了新的文献求助10
5秒前
6秒前
6秒前
Vicente完成签到,获得积分10
7秒前
叶青完成签到,获得积分10
7秒前
7秒前
yzy完成签到,获得积分10
7秒前
暴躁的薯片完成签到,获得积分10
9秒前
风趣的鸭子完成签到,获得积分10
9秒前
WQ发布了新的文献求助10
9秒前
9秒前
shinedan82发布了新的文献求助10
10秒前
10秒前
科研通AI5应助无心的早晨采纳,获得10
11秒前
yzy发布了新的文献求助30
11秒前
zyp发布了新的文献求助50
11秒前
11秒前
吕德华完成签到,获得积分10
13秒前
Sara完成签到 ,获得积分10
13秒前
灼灼朗朗发布了新的文献求助10
14秒前
15秒前
杨艺关注了科研通微信公众号
16秒前
阿喵完成签到,获得积分10
16秒前
jiangjiang完成签到,获得积分10
17秒前
沙不凡完成签到,获得积分10
19秒前
可靠的电源完成签到,获得积分10
19秒前
chaos完成签到,获得积分10
20秒前
shinedan82完成签到,获得积分20
21秒前
23秒前
24秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975