亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a machine learning-based prediction model for acute kidney injury associated with respiratory failure in the intensive care unit

作者
Qin Hu,Qimeng Wu,Jiaxiong Tan,Xiaoxin Tong,Haifang Zhang,Yuping Yang,Wen Lai,Ge Song,Shunda Du
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:25 (1): 326-326
标识
DOI:10.1007/s10238-025-01873-y
摘要

Acute kidney injury (AKI) is a frequent and severe complication in intensive care unit (ICU) patients with respiratory failure, associated with high mortality, prolonged hospitalization, and substantial healthcare burden. Conventional risk scores, such as SOFA and APACHE II, are not optimized for AKI prediction in this heterogeneous population. This study aimed to develop and validate an early AKI prediction model using machine learning. We analyzed 10,780 adult ICU patients with unspecified respiratory failure from the MIMIC-IV database, of whom 53.96% developed AKI according to KDIGO criteria. Ten supervised learning algorithms were trained using predictors from the first 48 h of ICU admission, with each model independently selecting its 15 most informative features via recursive feature elimination. Extreme gradient boosting (XGBoost) achieved the best performance (AUC 0.9023; accuracy 0.8247; sensitivity 0.8077; specificity 0.8386; precision 0.8040; negative predictive value 0.8419; F1-score 0.8058; Brier score 0.108). SHAP analysis identified creatinine_max, length of hospital stay, BUN_max, preexisting renal disease, and urine output as the most influential predictors. Leveraging routinely available early ICU data, this model enables accurate and interpretable AKI risk stratification. With external validation and integration into electronic health records, it could support proactive prevention and individualized management of AKI in critically ill respiratory failure patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
ooops关注了科研通微信公众号
9秒前
10秒前
刘言发布了新的文献求助20
14秒前
儒雅的十八完成签到,获得积分10
15秒前
瓜兮兮CYY发布了新的文献求助10
15秒前
kukudou2发布了新的文献求助30
22秒前
ooops发布了新的文献求助10
23秒前
顾矜应助杰老爷采纳,获得10
33秒前
方沅完成签到,获得积分10
34秒前
39秒前
刘言完成签到,获得积分20
40秒前
43秒前
杰老爷发布了新的文献求助10
46秒前
46秒前
58秒前
1分钟前
HH发布了新的文献求助10
1分钟前
粽子完成签到,获得积分10
1分钟前
Goal发布了新的文献求助10
1分钟前
1分钟前
小二郎应助HH采纳,获得10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
勤奋流沙完成签到 ,获得积分10
1分钟前
erjfuhe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
erjfuhe发布了新的文献求助10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
一个爱打乒乓球的彪完成签到 ,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160