作者
Cui Ge,Guangjian Zhang,Yijie Wang,Dandan Shao,Xiangjin Song,Zhaowei Wang
摘要
Artificial Intelligence (AI) is a key technological enabler for the transition of agricultural production and management from experience-driven to data-driven, continuously advancing modern agriculture toward smart agriculture. This evolution ultimately aims to achieve a precise agricultural production model characterized by low resource consumption, high safety, high quality, high yield, and stable, sustainable development. Although machine learning, deep learning, computer vision, Internet of Things, and other AI technologies have made significant progress in numerous agricultural production applications, most studies focus on singular agricultural scenarios or specific AI algorithm research, such as object detection, navigation, agricultural machinery maintenance, and food safety, resulting in relatively limited coverage. To comprehensively elucidate the applications of AI in agriculture and provide a valuable reference for practitioners and policymakers, this paper reviews relevant research by investigating the entire agricultural production process—including planting, management, and harvesting—covering application scenarios such as seed selection during the cultivation phase, pest and disease identification and intelligent management during the growth phase, and agricultural product grading during the harvest phase, as well as agricultural machinery and devices like fault diagnosis and predictive maintenance of agricultural equipment, agricultural robots, and the agricultural Internet of Things. It first analyzes the fundamental principles and potential advantages of typical AI technologies, followed by a systematic and in-depth review of the latest progress in applying these core technologies to smart agriculture. The challenges faced by existing technologies are also explored, such as the inherent limitations of AI models—including poor generalization capability, low interpretability, and insufficient real-time performance—as well as the complex agricultural operating environments that result in multi-source, heterogeneous, and low-quality, unevenly annotated data. Furthermore, future research directions are discussed, such as lightweight network models, transfer learning, embodied intelligent agricultural robots, multimodal perception technologies, and large language models for agriculture. The aim is to provide meaningful insights for both theoretical research and practical applications of AI technologies in agriculture.