Facilitating Identification of Ergonomic User Needs Through AI-Assisted Observation

作者
Leah Chong,Qihao Zhu,Booker Schelhaas,Gavin Ng,Maria C. Yang
标识
DOI:10.1115/detc2025-168959
摘要

Abstract User needs identification is a critical early step in the engineering design process, as it defines key design opportunities and goals. Observation is one of the most widely used methods, although its effectiveness is often constrained by its time-intensive nature and susceptibility to bias. To address these challenges, this paper introduces an AI-based observation tool that analyzes videos of user activity to assist the ergonomic need identification process. With ergonomic considerations, designers can better understand and satisfy user needs, leading to novel design solutions with improved usability and inclusiveness. Using computer vision techniques, including pose estimation and object segmentation, our tool assesses user posture and interactions with objects to detect physical discomfort. A human subject experiment was conducted as a formative investigation to evaluate the tool’s impact on the user needs identification process and outcome. While the tool did not significantly affect the number or types of needs identified, it improved the level of detail and efficiency in the identification process. Additionally, when using the tool, the participants reported higher confidence in their latent need finding performance. These findings suggest that our AI-based observation tool has potential to successfully assist designers by streamlining ergonomic analysis and enhancing user-centered design practices. Future improvements will focus on expanding the tool’s capabilities to detect emotional and psychological needs and refining its user interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abjhfsjkef完成签到,获得积分10
1秒前
Li完成签到,获得积分10
1秒前
1秒前
ZMM发布了新的文献求助10
2秒前
Me发布了新的文献求助10
2秒前
guard发布了新的文献求助10
3秒前
翁醉山完成签到 ,获得积分10
3秒前
3秒前
响叮当发布了新的文献求助10
3秒前
7秒前
盐于律己完成签到,获得积分10
8秒前
8秒前
丘比特应助lu采纳,获得10
9秒前
漂亮凌旋完成签到,获得积分10
9秒前
小何发布了新的文献求助10
9秒前
miles完成签到,获得积分10
10秒前
王金娥完成签到,获得积分10
11秒前
ling2001完成签到,获得积分10
17秒前
张丽妍发布了新的文献求助10
17秒前
19秒前
今后应助吃了就睡采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
浮游应助handada采纳,获得10
23秒前
少年锦时完成签到,获得积分10
23秒前
24秒前
li完成签到 ,获得积分10
25秒前
默默善愁发布了新的文献求助10
25秒前
曼曼完成签到,获得积分10
27秒前
无花果应助谭代涛采纳,获得10
27秒前
BowieHuang应助凌乱采纳,获得10
28秒前
嘿嘿发布了新的文献求助10
29秒前
上官若男应助llly采纳,获得10
29秒前
凶狠的雅霜完成签到,获得积分10
29秒前
olekravchenko应助科研通管家采纳,获得10
29秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
清秀大方嘤嘤猴完成签到,获得积分10
30秒前
思源应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
olekravchenko应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537662
求助须知:如何正确求助?哪些是违规求助? 4625146
关于积分的说明 14594680
捐赠科研通 4565616
什么是DOI,文献DOI怎么找? 2502535
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288