亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A self-training framework for semi-supervised pulmonary vessel segmentation and its application in COPD

作者
Shuiqing Zhao,Meihuan Wang,Jiaxuan Xu,Jie Feng,Wei Qian,Rongchang Chen,Zhenyu Liang,Shouliang Qi,Yanan Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 8953996251384489-8953996251384489
标识
DOI:10.1177/08953996251384489
摘要

Background It is fundamental for accurate segmentation and quantification of the pulmonary vessel, particularly smaller vessels, from computed tomography (CT) images in chronic obstructive pulmonary disease (COPD) patients. Objective The aim of this study was to segment the pulmonary vasculature using a semi-supervised method. Methods In this study, a self-training framework is proposed by leveraging a teacher-student model for the segmentation of pulmonary vessels. First, the high-quality annotations are acquired in the in-house data by an interactive way. Then, the model is trained in the semi-supervised way. A fully supervised model is trained on a small set of labeled CT images, yielding the teacher model. Following this, the teacher model is used to generate pseudo-labels for the unlabeled CT images, from which reliable ones are selected based on a certain strategy. The training of the student model involves these reliable pseudo-labels. This training process is iteratively repeated until an optimal performance is achieved. Results Extensive experiments are performed on non-enhanced CT scans of 125 COPD patients. Quantitative and qualitative analyses demonstrate that the proposed method, Semi2, significantly improves the precision of vessel segmentation by 2.3%, achieving a precision of 90.3%. Further, quantitative analysis is conducted in the pulmonary vessel of COPD, providing insights into the differences in the pulmonary vessel across different severity of the disease. Conclusion The proposed method can not only improve the performance of pulmonary vascular segmentation, but can also be applied in COPD analysis. The code will be made available at https://github.com/wuyanan513/semi-supervised-learning-for-vessel-segmentation .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好椰应助清酒采纳,获得20
4秒前
4秒前
芝士奶盖有点咸完成签到 ,获得积分10
7秒前
务实擎汉完成签到,获得积分10
9秒前
朴素剑心完成签到,获得积分10
9秒前
wu完成签到,获得积分10
11秒前
理解Jelly发布了新的文献求助10
12秒前
漂亮恶天完成签到 ,获得积分10
13秒前
15秒前
16秒前
18秒前
明月清风发布了新的文献求助20
18秒前
21秒前
15327432191完成签到,获得积分10
22秒前
23秒前
高高发布了新的文献求助10
24秒前
刀锋完成签到,获得积分10
27秒前
嗨Honey完成签到 ,获得积分10
30秒前
壮观的海豚完成签到 ,获得积分10
31秒前
bkagyin应助王红玉采纳,获得10
34秒前
无尾熊完成签到 ,获得积分10
37秒前
37秒前
50秒前
贰壹完成签到 ,获得积分10
52秒前
今日应助唐泽雪穗采纳,获得130
54秒前
55秒前
56秒前
57秒前
王红玉发布了新的文献求助10
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
brian0326发布了新的文献求助10
1分钟前
唐唐完成签到 ,获得积分10
1分钟前
brian0326完成签到,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847